MATH 240: Rosen §2.3 #40a sample solution

Brent Yorgey

February 17, 2021

40a. Show $f(S \cup T) = f(S) \cup f(T)$.

To prove this we first have to make sure we understand all the concepts involved!

1. First, what does f(S) mean? A function f being applied to a whole set? In general, if $f : A \rightarrow B$ and $S \subseteq A$ then

$$f(S) = \{f(s) \mid s \in S\},\$$

that is, f(S) is the set of all the outputs we get if we apply f to everything in *S*. f(S) is called the *image* of *S* under *f*.

- 2. Next, how do we show two sets are equal? To show A = B we must show that $A \subseteq B$ and $B \subseteq A$.
- 3. Well, how do we show $A \subseteq B$? By definition, $A \subseteq B$ means $\forall a. a \in A \rightarrow a \in B$. So we must show for any arbitrary $a \in A$ that *a* is also an element of *B*.
- 4. Finally, what is the definition of $S \cup T$?

$$S \cup T = \{ x \mid x \in S \lor x \in T \}.$$

We can now put all these together to do part of the proof. Let $f : A \to B$ and $S, T \subseteq A$. Let's show that $f(S \cup T) \subseteq f(S) \cup f(T)$ (this is one half of the proof).

Proof. Let $x \in f(S \cup T)$; then we must show that $x \in f(S) \cup f(T)$. By definition of a function applied to a set, if $x \in f(S \cup T)$, then there exists some $s \in S \cup T$ such that f(s) = x. Then by definition of \cup , either $s \in S$ or $s \in T$. We consider both cases.

- If $s \in S$, then $x \in f(S)$ since x = f(s). Therefore $x \in f(S) \cup f(T)$.
- The case for $s \in T$ is similar.