MATH 240 Module 6: Divisibility

due Friday, 17 March 2023

Learning Goals

- Understand and apply the divisibility relation
- Use the division algorithm to calculate quotients and remainders, and use quotient and mod operations appropriately to solve problems
- Prove properties of modular equivalence, and solve modular equivalences

Submission

You should submit:

- A PDF with your answers to the exercises (you may either type your answers and export as a PDF, or write your answers by hand and scan them using an app such as GeniusScan or CamScanner).
- You should also complete the mid-semester survey (https:// forms.gle/X5J5aayiMvm28pCM7) and include a statement in your PDF that you have completed the survey.

Exercises

Exercise 1 Complete two more parts of the theorem from class about properties of the divisibility relation. Let *a*, *b*, and *c* be arbitrary integers.

- (a) Prove that if $a \mid b$, then $a \mid bc$.
- (b) Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.

Exercise 2 For each part, compute the quotient *q* and remainder *r* (according to the *division algorithm* from class) when *a* is divided by *b*.

- (a) a = 44, b = 8
- (b) *a* = 777, *b* = 21
- (c) a = -123, b = 19
- (d) a = -1, b = 23

Exercise 3 Consider taking a $r \times c$ square grid and numbering the cells consecutively row by row, starting with cell 0. For example, if we have a 3×8 grid, we would number the cells like this:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23

There are now two different ways we could identify a particular cell: by the number it contains, or by its (row, column) coordinates. For example, the cell labelled 19 in the grid above is at row 2, column 3 (note that we start numbering rows and columns at 0, so the above example has rows o_{-2} and columns o_{-7}).

- (a) Explain how we can convert from (row, column) coordinates to cell number. That is, given an *r* × *c* grid numbered according to the above scheme, how can we compute which number will be in cell (*i*, *j*)?
- (b) Now explain how to convert in the other direction. That is, given a particular cell number *n*, how can we compute the row and column coordinates (*i*, *j*) at which we will find *n*?

© 2023 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Exercise 4 Prove that equivalence modulo *m* is a *congruence with respect to multiplication*. That is, prove that for all integers *a*, *b*, *c*, *d* and positive integers *m*, if $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Exercise 5 Solve each of the following modular equivalences for *x*. Your solution should be of the form $x \equiv_m k$ where $0 \le k < m$.

(a) $2x + 5 \equiv_7 3x - 12$

(b) $172x + 99 \equiv_{19} 359$

© 2023 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.