MATH 240 Module 6: Divisibility

due Friday, 17 March 2023

Learning Goals

- Understand and apply the divisibility relation
- Use the division algorithm to calculate quotients and remainders, and use quotient and mod operations appropriately to solve problems
- Prove properties of modular equivalence, and solve modular equivalences

Submission

You should submit:

- A PDF with your answers to the exercises (you may either type your answers and export as a PDF, or write your answers by hand and scan them using an app such as GeniusScan or CamScanner).
- You should also complete the mid-semester survey (https:// forms.gle/X5J5aayiMvm28pCM7) and include a statement in your PDF that you have completed the survey.

Exercises

Exercise 1 Complete two more parts of the theorem from class about properties of the divisibility relation. Let a, b, and c be arbitrary integers.
(a) Prove that if $a \mid b$, then $a \mid b c$.
(b) Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.

Exercise 2 For each part, compute the quotient q and remainder r (according to the division algorithm from class) when a is divided by b.
(a) $a=44, b=8$
(b) $a=777, b=21$
(c) $a=-123, b=19$
(d) $a=-1, b=23$

Exercise 3 Consider taking a $r \times c$ square grid and numbering the cells consecutively row by row, starting with cell 0 . For example, if we have a 3×8 grid, we would number the cells like this:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23

There are now two different ways we could identify a particular cell: by the number it contains, or by its (row, column) coordinates. For example, the cell labelled 19 in the grid above is at row 2 , column 3 (note that we start numbering rows and columns at o, so the above example has rows $0-2$ and columns $0-7$).
(a) Explain how we can convert from (row, column) coordinates to cell number. That is, given an $r \times c$ grid numbered according to the above scheme, how can we compute which number will be in cell (i, j) ?
(b) Now explain how to convert in the other direction. That is, given a particular cell number n, how can we compute the row and column coordinates (i, j) at which we will find n ?
© 2023 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Exercise 4 Prove that equivalence modulo m is a congruence with respect to multiplication. That is, prove that for all integers a, b, c, d and positive integers m, if $a \equiv_{m} b$ and $c \equiv_{m} d$, then $a c \equiv_{m} b d$.

Exercise 5 Solve each of the following modular equivalences for x.
Your solution should be of the form $x \equiv_{m} k$ where $0 \leq k<m$.
(a) $2 x+5 \equiv_{7} 3 x-12$
(b) $172 x+99 \equiv_{19} 359$

