How to Prove Things Brent Yorgey February 8, 2025

Just follow these Three Easy StepsTM!

- 1. Translate the statement into propositional logic (using \land , \lor , \neg , \rightarrow , \forall , and \exists).
- 2. Use a proof template appropriate to the outermost logical connective. Repeat as necessary, nesting proof templates within each other.
- 3. Use your intuition/insight/ingenuity/specific content knowledge to fill in the missing bits.

Conjunction (AND): $p \land q$

To prove a conjunction $p \land q$, prove p and prove q.

We must show $p \land q$, which we will do by proving them each separately.

Proof of p

Proof of q

Therefore, since we have proved *p* and *q* separately, we have proved $p \wedge q$.

Disjunction (OR): $p \lor q$

To prove a disjunction $p \lor q$, you can do *any* of the following:

1. Prove *p*.

We must show $p \lor q$, which we will do by showing that in fact p holds.

Proof of p

Therefore, $p \lor q$ is true, since we have proved the left side.

- 2. Prove *q*. (Similar to the above example.)
- 3. Use a proof by contradiction.

We must show $p \lor q$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, $\neg p \land \neg q$.

Contradiction, i.e. proof of False

Therefore, since the assumption that $p \lor q$ is false led to a contradiction, we conclude that it must be true.

Implication: $p \rightarrow q$

To prove an implication, $p \rightarrow q$, you can do one of the following:

1. *Suppose p* is true, then prove *q*.

Suppose *p*. Then we must show *q*.

Proof of *q*, making use of the fact that *p* is true. Therefore, since we proved *q* under the supposition *p*, therefore $n \rightarrow a$ is true

2. Prove the *contrapositive*, that is, prove $\neg q \rightarrow \neg p$, which is logically equivalent.

To prove $p \rightarrow q$, we will prove the contrapositive, that is, $\neg q \rightarrow$ $\neg p$.

Proof of
$$\neg q \rightarrow \neg p$$

Proof of $\neg q \rightarrow \neg p$ Since we have shown that $\neg q \rightarrow \neg p$, therefore $p \rightarrow q$ also.

Biconditional: $p \leftrightarrow q$

To prove an if and only if, $p \leftrightarrow q$, prove $(p \rightarrow q) \land (q \rightarrow p)$.

To prove $p \leftrightarrow q$, we will prove both directions.

 $(\rightarrow) \operatorname{Proof} of p \to q$ $(\leftarrow) \operatorname{Proof} of q \to p$

Since we have shown $p \rightarrow q$ and $q \rightarrow p$, therefore $p \leftrightarrow q$.

To prove a negation $\neg p$:

You will sometimes hear this called a direct proof, but the name does not really matter.

- 1. Use De Morgan laws to "push the negation inwards", then use one of the other proof rules. For example, if you wanted to prove something of the form $\neg(p \land q)$, first use a De Morgan law to transform this into $\neg p \lor \neg q$; then use one of the methods listed above for proving a disjunction.
- 2. Use a proof by contradiction, that is, prove $p \rightarrow F$.

We must show $\neg p$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, *p*.
Derive a contradiction

Therefore, since the assumption that p is true led to a contradiction, we conclude that it must be false.

Universal quantifier: $\forall x : D. P(x)$

To prove a "universally quantified" statement $\forall x: D. P(x)$, you can do one of the following:

1. Let *d* stand for an *arbitrary* element of the domain *D*, and prove P(d). Arbitrary means we don't assume *anything* about *d* except the fact that it is in the domain *D*. This means that the same proof will work no matter what specific element of *D* might be filled in for *d*.

Let *d* be an arbitrary *D*; we must show P(d).

Proof of P(d)*, supposing only that d is an element of* D

Therefore, since *d* was arbitrary, in fact $\forall x : D. P(x)$.

2. Use induction.

Existential quantifier: $\exists x : D. P(x)$

To prove an "existentially quantified" statement $\exists x : D. P(x)$:

1. Pick a specific d (a "witness") in the domain D and prove P(d).

To show $\exists x : D. P(x)$, we will in fact show that this is true specifically for d. *Proof of* P(d)

Advanced aside: in some constructive systems of logic, this is not actually a proof by contradiction: $\neg p$ can be *defined as* just a shorthand for $p \rightarrow F$, in which case proving $p \rightarrow F$ is just the normal way to prove $\neg p$, and not a proof by contradiction. In fact, in such systems typically proof by contradiction is not accepted as a valid proof technique at all.

Warning: note it is common practice to reuse the same variable name x instead of creating a new name *d*.

Since we have shown P(d), and d is an element of D, therefore $\exists x : D. P(x)$.

2. Use a proof by contradiction.

We must show $\exists x : D. P(x)$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, $\forall x : D. \neg P(x)$.

Derive a contradiction

Therefore, since the assumption that $\exists x : D. P(x)$ is false led to a contradiction, we conclude that it must be true.

Examples

Example.

$P \leftrightarrow \neg (Q \lor R)$

Proof. To show $P \leftrightarrow \neg(Q \lor \neg R)$, we will show both directions separately.

 (\rightarrow) We must show $P \rightarrow \neg(Q \lor \neg R)$, so suppose *P* is true; we will show $\neg(Q \lor \neg R)$.

 \neg (*Q* $\lor \neg$ *R*) is equivalent to \neg *Q* \land *R*. To prove this, we will show each separately.

To prove $\neg Q$, we will use a proof by contradiction. Suppose Q is true.

Contradiction, using P and Q

Since assuming *Q* led to a contradiction, in fact we must have $\neg Q$.

Proof of R, using P

Since we have shown both $\neg Q$ and *R*, therefore $\neg Q \land R$, which is equivalent to $\neg (Q \lor \neg R)$.

(\leftarrow) We must show $\neg(Q \lor R) \rightarrow P$, so suppose $\neg(Q \lor R)$; we will show *P*.

Proof of P, using \neg ($Q \lor R$)

Example. If *n* is an odd integer, then n^2 is also odd. Translation:

 $\forall n : \mathbb{Z}. \operatorname{Odd}(n) \to \operatorname{Odd}(n^2).$

Proof. To show $\forall n : \mathbb{Z}$. Odd $(n) \rightarrow$ Odd (n^2) , let k be an arbitrary integer; then we must show that Odd $(k) \rightarrow$ Odd (k^2) .

To show $Odd(k) \rightarrow Odd(k^2)$, suppose Odd(k) is true, that is, there exists an integer *j* such that k = 2j + 1. Then we must show that $Odd(k^2)$ is true, that is, there exists an integer *p* such that $k^2 = 2p + 1$.

$$k^2 = (2j+1)^2 = 4j^2 + 4j + 1 = 2(2j^2 + 2j) + 1$$
, so we can
pick $p = 2j^2 + 2j$, which is an integer since *j* is an integer.

Therefore, $Odd(k) \rightarrow Odd(k^2)$.

Therefore, since *k* was arbitrary, $Odd(n) \rightarrow Odd(n^2)$ for all integers *n*.

Example. If *n* is an integer and 3n + 2 is odd, then *n* is odd. Translation:

$$\forall n : \mathbb{Z}. \operatorname{Odd}(3n+2) \to \operatorname{Odd}(n)$$

Proof. Let *m* be an arbitrary integer; we must show $Odd(3m + 2) \rightarrow Odd(m)$.

We will do this by showing the contrapositive, $\neg \text{Odd}(m) \rightarrow \neg \text{Odd}(3m + 2)$, that is, $\text{Even}(m) \rightarrow \text{Even}(3m + 2)$.

So suppose Even(*m*), that is, there exists an integer *k* such that m = 2k. We must show Even(3m + 2), that is, 3m + 2 = 2j for some integer *j*.

We calculate as follows: 3m + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). Thus, j = 3k + 1 is the desired integer such that 3m + 2 = 2j, so Even(3m + 2).

Thus, since we were able to show Even(3m+2) under the supposition that Even(m), therefore $\text{Even}(m) \rightarrow \text{Even}(3m+2)$.

Therefore, the contrapositive $Odd(3m+2) \rightarrow Odd(m)$ is also true.

Since *m* was an arbitrary integer, this shows that $\forall n : \mathbb{Z}$. Odd $(3m + 2) \rightarrow \text{Odd}(m)$.

Example. Every odd integer is not even. Translation:

$$\forall n : \mathbb{Z}. \operatorname{Odd}(n) \to \neg \operatorname{Even}(n).$$

Note that this may seem obvious, but since we have defined Even $(n) = \exists k : \mathbb{Z}$. n = 2k and $Odd(n) = \exists k : \mathbb{Z}$. n = 2k + 1, the fact that they are negations of each other does not follow automatically from the definitions.

Proof. Let *n* be an arbitrary integer; we must show $Odd(n) \rightarrow \neg Even(n)$.

Suppose Odd(n), that is, there exists some integer k such that n = 2k + 1. We must show \neg Even(n).

For the purpose of obtaining a contradiction, suppose otherwise, that is, suppose Even(n), which means n = 2j for some integer *j*.

We now have n = 2k + 1 and n = 2j. Hence 2k + 1 = 2j. Solving for *j*, we get j = k + 1/2, but this is impossible: we assumed that *j* and *k* are both integers, and 1/2 more than an integer can never be another integer.

Since the assumption of Even(n) led to a contradiction, in fact we must have $\neg Even(n)$.

Since we have shown \neg Even(n) under the assumption of Odd(n), therefore Odd $(n) \rightarrow \neg$ Even(n).

Therefore, since *n* was arbitrary, we conclude that every odd integer is not even. \Box

Note that the inverse, $\forall n : \mathbb{Z}$. $\neg \text{Odd}(n) \rightarrow \text{Even}(n)$, is also true, but more difficult to prove. It follows from the fact that $\forall n : \mathbb{Z}$. Even $(n) \lor \text{Odd}(n)$, but proving this fact requires the Division Algorithm.