How to Prove Things

Brent Yorgey

February 15, 2023

Just follow these two easy steps!

1. Translate the statement into propositional logic (using $\wedge, \vee, \neg, \rightarrow$, \forall, and \exists).
2. Use a proof method/template appropriate to the outermost logical connective. Repeat as necessary, nesting proof templates within each other.

Conjunction (AND): $p \wedge q$

To prove a conjunction $p \wedge q$, prove p and prove q.
We must show $p \wedge q$, which we will do by proving them each separately.

- [proof of p]
- [proof of q]

Therefore, since we have proved p and q separately, we have proved their conjunction.

Disjunction (OR): $p \vee q$

To prove a disjunction $p \vee q$, you can do any of the following:

1. Prove p.

We must show $p \vee q$, which we will do by showing that in fact p holds.

- [proof of p]

Therefore, $p \vee q$ is true, since we have proved the left side.
2. Prove q. (Similar to the above example.)
3. Use a proof by contradiction.

We must show $p \vee q$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, $\neg p \wedge \neg q$.

- [derive a contradiction]

Therefore, since the assumption that $p \vee q$ is false led to a contradiction, we conclude that it must be true.

Implication: $p \rightarrow q$

To prove an implication, $p \rightarrow q$, you can do one of the following:

1. Suppose p is true, then prove q. (You will sometimes hear this called a direct proof, but the name does not matter.)

Suppose p. Then we must show q.

- [proof of q, making use of the fact that p is true.]

Therefore, since we proved q under the supposition p, therefore $p \rightarrow q$ is true.
2. Prove the contrapositive, that is, prove $\neg q \rightarrow \neg p$, which is logically equivalent.

To prove $p \rightarrow q$, we will prove the contrapositive, that is, $\neg q \rightarrow \neg p$.

- [proof of $\neg q \rightarrow \neg p$]

Since we have shown that $\neg q \rightarrow \neg p$, therefore $p \rightarrow q$ also.
3. Use a proof by contradiction.

We must show $p \rightarrow q$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, $p \wedge \neg q$.

- [derive a contradiction]

Therefore, since the assumption that $p \rightarrow q$ is false led to a contradiction, we conclude that it must be true.

Biconditional: $p \leftrightarrow q$
To prove an if and only if, $p \leftrightarrow q$, prove $(p \rightarrow q) \wedge(q \rightarrow p)$.
To prove $p \leftrightarrow q$, we will prove both directions.

- (\rightarrow) [proof of $p \rightarrow q$]
- (\leftarrow) [proof of $q \rightarrow p]$

Since we have shown $p \rightarrow q$ and $q \rightarrow p$, therefore $p \leftrightarrow q$.

Negation: $\neg p$

To prove a negation $\neg p$:

1. Use De Morgan laws to "push the negation inwards", then use one of the other proof rules. For example, if you wanted to prove something of the form $\neg(p \wedge q)$, first use a De Morgan law to transform this into $\neg p \vee \neg q$; then use one of the methods listed above for proving a disjunction.
2. Use a proof by contradiction, that is, prove $p \rightarrow \mathrm{~F}$.

We must show $\neg p$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, p.

- [derive a contradiction]

Therefore, since the assumption that p is true led to a contradiction, we conclude that it must be false.

Universal quantifier: $\forall x: D . P(x)$

To prove a "universally quantified" statement $\forall x: D . P(x)$, you can do one of the following:

1. Let d stand for an arbitrary element of the domain D, and prove $P(d)$. Arbitrary means we don't assume anything about d except the fact that it is in the domain D. This means that the same proof will work for every single element in D.

Let d be an arbitrary D; we must show $P(d)$.

- [proof of $P(d)]$

Therefore, since d was arbitrary, in fact $\forall x: D . P(x)$.
2. Use induction.

Existential quantifier: $\exists x: D . P(x)$
To prove an "existentially quantified" statement $\exists x: D . P(x)$:

1. Pick a specific d (a "witness") in the domain D and prove $P(d)$.

To show $\exists x: D$. $P(x)$, we will in fact show that this is true specifically for d.

- [proof of $P(d)]$

Warning: note it is common practice to reuse the same variable name x instead of creating a new name d.

Since we have shown $P(d)$, and d is an element of D, therefore $\exists x: D . P(x)$.
2. Use a proof by contradiction.

We must show $\exists x: D . P(x)$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, $\forall x$: D. $\neg P(x)$.

- [derive a contradiction]

Therefore, since the assumption that $\exists x: D . P(x)$ is false led to a contradiction, we conclude that it must be true.

Examples

Example. if n is an odd integer, then n^{2} is also odd. Translation:

$$
\forall n: \mathbb{Z} . \operatorname{Odd}(n) \rightarrow \operatorname{Odd}\left(n^{2}\right)
$$

Proof. To show $\forall n: \mathbb{Z}$. $\operatorname{Odd}(n) \rightarrow \operatorname{Odd}\left(n^{2}\right)$, let k be an arbitrary integer; then we must show that $\operatorname{Odd}(k) \rightarrow \operatorname{Odd}\left(k^{2}\right)$.

- To show $\operatorname{Odd}(k) \rightarrow \operatorname{Odd}\left(k^{2}\right)$, suppose $\operatorname{Odd}(k)$ is true, that is, there exists an integer j such that $k=2 j+1$. Then we must show that $\operatorname{Odd}\left(k^{2}\right)$ is true, that is, there exists an integer p such that $k^{2}=2 p+1$.
- $k^{2}=(2 j+1)^{2}=4 j^{2}+4 j+1=2\left(2 j^{2}+2 j\right)+1$, so we can pick $p=2 j^{2}+2 j$, which is an integer since k is an integer.

Therefore, $\operatorname{Odd}(k) \rightarrow \operatorname{Odd}\left(k^{2}\right)$.
Therefore, since k was arbitrary, $\operatorname{Odd}(n) \rightarrow \operatorname{Odd}\left(n^{2}\right)$ for all integers n.

Example. If n is an integer and $3 n+2$ is odd, then n is odd. Translation:

$$
\forall n: \mathbb{Z} . \operatorname{Odd}(3 n+2) \rightarrow \operatorname{Odd}(n)
$$

Proof. Let m be an arbitrary integer; we must show $\operatorname{Odd}(3 m+2) \rightarrow$ $\operatorname{Odd}(m)$.

- We will do this by showing the contrapositive, $\neg \operatorname{Odd}(m) \rightarrow$ $\neg \operatorname{Odd}(3 m+2)$, that is, $\operatorname{Even}(m) \rightarrow \operatorname{Even}(3 m+2)$.
- So suppose Even (m), that is, there exists an integer k such that $m=2 k$. We must show $\operatorname{Even}(3 m+2)$, that is, $3 m+2=2 j$ for some integer j.

Note that it is actually not obvious from the definitions that $\neg \operatorname{Odd}(m) \equiv$ Even (m) ! But we will assume it for now. See the discussion following the next example.

* We calculate as follows: $3 m+2=3(2 k)+2=6 k+2=$ $2(3 k+1)$. Thus, $j=3 k+1$ is the desired integer such that $3 m+2=2 j$, so Even $(3 m+2)$.

Thus, since we were able to show $\operatorname{Even}(3 m+2)$ under the supposition that Even (m), therefore $\operatorname{Even}(m) \rightarrow \operatorname{Even}(3 m+2)$.

Therefore, the contrapositive $\operatorname{Odd}(3 m+2) \rightarrow \operatorname{Odd}(m)$ is also true.
Since m was an arbitrary integer, this shows that $\forall n: \mathbb{Z}$. $\operatorname{Odd}(3 m+$ 2) $\rightarrow \operatorname{Odd}(m)$.

Example. Every odd integer is not even. Translation:

$$
\forall n: \mathbb{Z} . \operatorname{Odd}(n) \rightarrow \neg \operatorname{Even}(n) .
$$

Note that this may seem obvious, but since we have defined $\operatorname{Even}(n)=\exists k: \mathbb{Z} . n=2 k$ and $\operatorname{Odd}(n)=\exists k: \mathbb{Z} . n=2 k+1$, the fact that they are negations of each other does not follow automatically from the definitions.

Proof. Let n be an arbitrary integer; we must show $\operatorname{Odd}(n) \rightarrow$ $\neg \operatorname{Even}(n)$.

- Suppose $\operatorname{Odd}(n)$, that is, there exists some integer k such that $n=2 k+1$. We must show $\neg \operatorname{Even}(n)$.
- For the purpose of obtaining a contradiction, suppose otherwise, that is, suppose $\operatorname{Even}(n)$, which means $n=2 j$ for some integer j.
* We now have $n=2 k+1$ and $n=2 j$. Hence $2 k+1=2 j$. Solving for j, we get $j=k+1 / 2$, but this is impossible: we assumed that j and k are both integers, and adding $1 / 2$ to an integer can never yield another integer.
Since the assumption of $\operatorname{Even}(n)$ led to a contradiction, in fact we must have $\neg \operatorname{Even}(n)$.

Since we have shown $\neg \operatorname{Even}(n)$ under the assumption of $\operatorname{Odd}(n)$, therefore $\operatorname{Odd}(n) \rightarrow \neg \operatorname{Even}(n)$.

Therefore, since n was arbitrary, we conclude that every odd integer is not even.

Note that proving the converse, $\forall n: \mathbb{Z}$. $\neg \operatorname{Odd}(n) \rightarrow \operatorname{Even}(n)$, is more difficult. It follows from the fact that $\forall n: \mathbb{Z}$. Even $(n) \vee \operatorname{Odd}(n)$, but proving this fact requires the Division Algorithm.

