How to Prove Things

Brent Yorgey

February 15, 2023

Just follow these two easy steps!

- 1. Translate the statement into propositional logic (using \land , \lor , \neg , \rightarrow , \forall , and \exists).
- 2. Use a proof method/template appropriate to the outermost logical connective. Repeat as necessary, nesting proof templates within each other.

Conjunction (AND): $p \wedge q$

To prove a conjunction $p \land q$, prove p and prove q.

We must show $p \land q$, which we will do by proving them each separately.

- [proof of *p*]
- [proof of *q*]

Therefore, since we have proved p and q separately, we have proved their conjunction.

Disjunction (OR): $p \vee q$

To prove a disjunction $p \lor q$, you can do *any* of the following:

1. Prove *p*.

We must show $p \lor q$, which we will do by showing that in fact p holds.

• [proof of *p*]

Therefore, $p \lor q$ is true, since we have proved the left side.

- 2. Prove *q*. (Similar to the above example.)
- 3. Use a proof by contradiction.

We must show $p \lor q$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, $\neg p \land \neg q$.

• [derive a contradiction]

Implication: $p \rightarrow q$

To prove an implication, $p \rightarrow q$, you can do one of the following:

1. *Suppose p* is true, then prove *q*. (You will sometimes hear this called a *direct proof*, but the name does not matter.)

Suppose p. Then we must show q.

• [proof of *q*, making use of the fact that *p* is true.]

Therefore, since we proved q under the supposition p, therefore $p \rightarrow q$ is true.

2. Prove the *contrapositive*, that is, prove $\neg q \rightarrow \neg p$, which is logically equivalent.

To prove $p \to q$, we will prove the contrapositive, that is, $\neg q \to \neg p$.

• [proof of $\neg q \rightarrow \neg p$]

Since we have shown that $\neg q \rightarrow \neg p$, therefore $p \rightarrow q$ also.

3. Use a proof by contradiction.

We must show $p \to q$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, $p \land \neg q$.

• [derive a contradiction]

Therefore, since the assumption that $p \rightarrow q$ is false led to a contradiction, we conclude that it must be true.

Biconditional: $p \leftrightarrow q$

To prove an if and only if, $p \leftrightarrow q$, prove $(p \rightarrow q) \land (q \rightarrow p)$.

To prove $p \leftrightarrow q$, we will prove both directions.

- (\rightarrow) [proof of $p \rightarrow q$]
- (\leftarrow) [proof of $q \rightarrow p$]

Since we have shown $p \to q$ and $q \to p$, therefore $p \leftrightarrow q$.

Negation: $\neg p$

To prove a negation $\neg p$:

- 1. Use De Morgan laws to "push the negation inwards", then use one of the other proof rules. For example, if you wanted to prove something of the form $\neg(p \land q)$, first use a De Morgan law to transform this into $\neg p \lor \neg q$; then use one of the methods listed above for proving a disjunction.
- 2. Use a proof by contradiction, that is, prove $p \to F$.

We must show $\neg p$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, p.

• [derive a contradiction]

Therefore, since the assumption that *p* is true led to a contradiction, we conclude that it must be false.

Universal quantifier: $\forall x : D. P(x)$

To prove a "universally quantified" statement $\forall x: D. P(x)$, you can do one of the following:

1. Let *d* stand for an *arbitrary* element of the domain *D*, and prove P(d). Arbitrary means we don't assume anything about d except the fact that it is in the domain *D*. This means that the same proof will work for every single element in *D*.

Let d be an arbitrary D; we must show P(d).

• [proof of P(d)]

Therefore, since *d* was arbitrary, in fact $\forall x$: *D*. P(x).

2. Use induction.

Existential quantifier: $\exists x:D.\ P(x)$

To prove an "existentially quantified" statement $\exists x : D. P(x)$:

1. Pick a specific d (a "witness") in the domain D and prove P(d).

To show $\exists x : D. P(x)$, we will in fact show that this is true specifically for *d*.

[proof of P(d)]

Warning: note it is common practice to reuse the same variable name x instead of creating a new name d.

Since we have shown P(d), and d is an element of D, therefore $\exists x : D. P(x)$.

2. Use a proof by contradiction.

We must show $\exists x : D. P(x)$. For the purpose of obtaining a contradiction, let us suppose the opposite, that is, $\forall x$: $D. \neg P(x).$

• [derive a contradiction]

Therefore, since the assumption that $\exists x : D. P(x)$ is false led to a contradiction, we conclude that it must be true.

Examples

Example. if n is an odd integer, then n^2 is also odd. Translation:

$$\forall n : \mathbb{Z}. \operatorname{Odd}(n) \to \operatorname{Odd}(n^2).$$

Proof. To show $\forall n : \mathbb{Z}$. $Odd(n) \to Odd(n^2)$, let k be an arbitrary integer; then we must show that $Odd(k) \rightarrow Odd(k^2)$.

- To show $Odd(k) \rightarrow Odd(k^2)$, suppose Odd(k) is true, that is, there exists an integer j such that k = 2j + 1. Then we must show that $Odd(k^2)$ is true, that is, there exists an integer p such that $k^2 = 2p + 1.$
 - $-k^2 = (2j+1)^2 = 4j^2 + 4j + 1 = 2(2j^2 + 2j) + 1$, so we can pick $p = 2j^2 + 2j$, which is an integer since k is an integer.

Therefore, $Odd(k) \rightarrow Odd(k^2)$.

Therefore, since k was arbitrary, $Odd(n) \rightarrow Odd(n^2)$ for all integers n.

Example. If n is an integer and 3n + 2 is odd, then n is odd. Translation:

$$\forall n: \mathbb{Z}. \ \mathrm{Odd}(3n+2) \to \mathrm{Odd}(n)$$

Proof. Let m be an arbitrary integer; we must show $Odd(3m + 2) \rightarrow$ Odd(m).

- We will do this by showing the contrapositive, $\neg \operatorname{Odd}(m) \rightarrow$ $\neg \operatorname{Odd}(3m+2)$, that is, $\operatorname{Even}(m) \to \operatorname{Even}(3m+2)$.
 - So suppose Even(m), that is, there exists an integer k such that m = 2k. We must show Even(3m + 2), that is, 3m + 2 = 2i for some integer j.

Note that it is actually not obvious from the definitions that $\neg \operatorname{Odd}(m) \equiv$ Even(m)! But we will assume it for now. See the discussion following the next example.

* We calculate as follows: 3m + 2 = 3(2k) + 2 = 6k + 2 =2(3k+1). Thus, j=3k+1 is the desired integer such that 3m + 2 = 2i, so Even(3m + 2).

Thus, since we were able to show Even(3m + 2) under the supposition that Even(m), therefore Even(m) \rightarrow Even(3m + 2).

Therefore, the contrapositive $Odd(3m + 2) \rightarrow Odd(m)$ is also true.

Since *m* was an arbitrary integer, this shows that $\forall n : \mathbb{Z}$. Odd(3m + $2) \rightarrow Odd(m)$.

Example. Every odd integer is not even. Translation:

$$\forall n : \mathbb{Z}. \ \mathrm{Odd}(n) \to \neg \operatorname{Even}(n).$$

Note that this may seem obvious, but since we have defined Even $(n) = \exists k : \mathbb{Z}. \ n = 2k \text{ and } Odd(n) = \exists k : \mathbb{Z}. \ n = 2k + 1$, the fact that they are negations of each other does not follow automatically from the definitions.

Proof. Let *n* be an arbitrary integer; we must show $Odd(n) \rightarrow$ \neg Even(n).

- Suppose Odd(n), that is, there exists some integer k such that n = 2k + 1. We must show $\neg \text{Even}(n)$.
 - For the purpose of obtaining a contradiction, suppose otherwise, that is, suppose Even(n), which means n = 2i for some integer j.
 - * We now have n = 2k + 1 and n = 2j. Hence 2k + 1 = 2j. Solving for j, we get j = k + 1/2, but this is impossible: we assumed that j and k are both integers, and adding 1/2 to an integer can never yield another integer.

Since the assumption of Even(n) led to a contradiction, in fact we must have $\neg \text{Even}(n)$.

Since we have shown $\neg \text{Even}(n)$ under the assumption of Odd(n), therefore $Odd(n) \rightarrow \neg Even(n)$.

Therefore, since *n* was arbitrary, we conclude that every odd integer is not even.

Note that proving the converse, $\forall n : \mathbb{Z}. \neg Odd(n) \rightarrow Even(n)$, is more difficult. It follows from the fact that $\forall n : \mathbb{Z}$. Even $(n) \vee \text{Odd}(n)$, but proving this fact requires the Division Algorithm.