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Just follow these Three Easy Steps™!

1. Translate the statement into propositional logic (using ∧, ∨, ¬,→,
∀, and ∃).

2. Use a proof template appropriate to the outermost logical con-
nective. Repeat as necessary, nesting proof templates within each
other.

3. Use your intuition/insight/ingenuity/specific content knowledge
to fill in the missing bits.

Conjunction (AND): p ∧ q

To prove a conjunction p ∧ q, prove p and prove q.

We must show p∧ q, which we will do by proving them each sep-
arately.

Proof of p

Proof of q

Therefore, since we have proved p and q separately, we have proved
p ∧ q.

Disjunction (OR): p ∨ q

To prove a disjunction p ∨ q, you can do any of the following:

1. Prove p.

We must show p∨ q, which we will do by showing that in fact
p holds.

Proof of p

Therefore, p ∨ q is true, since we have proved the left side.

2. Prove q. (Similar to the above example.)

3. Use a proof by contradiction.
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We must show p∨ q. For the purpose of obtaining a contradic-
tion, let us suppose the opposite, that is, ¬p ∧ ¬q.

Contradiction, i.e. proof of False

Therefore, since the assumption that p∨ q is false led to a con-
tradiction, we conclude that it must be true.

Implication: p→ q

To prove an implication, p→ q, you can do one of the following:

1. Suppose p is true, then prove q. You will sometimes hear this called a
direct proof, but the name does not really
matter.Suppose p. Then we must show q.

Proof of q, making use of the fact that p is true.

Therefore, since we proved q under the supposition p, therefore
p→ q is true.

2. Prove the contrapositive, that is, prove ¬q → ¬p, which is logically
equivalent.

To prove p→ q, we will prove the contrapositive, that is, ¬q→
¬p.

Proof of ¬q→ ¬p

Since we have shown that ¬q→ ¬p, therefore p→ q also.

Biconditional: p↔ q

To prove an if and only if, p↔ q, prove (p→ q) ∧ (q→ p).

To prove p↔ q, we will prove both directions.

(→) Proof of p→ q

(←) Proof of q→ p

Since we have shown p→ q and q→ p, therefore p↔ q.

Negation: ¬p

To prove a negation ¬p:



how to prove things 3

1. Use De Morgan laws to “push the negation inwards”, then use
one of the other proof rules. For example, if you wanted to prove
something of the form ¬(p ∧ q), first use a De Morgan law to
transform this into ¬p ∨ ¬q; then use one of the methods listed
above for proving a disjunction.

2. Use a proof by contradiction, that is, prove p→ F. Advanced aside: in some constructive
systems of logic, this is not actually
a proof by contradiction: ¬p can be
defined as just a shorthand for p → F,
in which case proving p → F is just
the normal way to prove ¬p, and
not a proof by contradiction. In fact,
in such systems typically proof by
contradiction is not accepted as a valid
proof technique at all.

We must show ¬p. For the purpose of obtaining a contradiction,
let us suppose the opposite, that is, p.

Derive a contradiction

Therefore, since the assumption that p is true led to a contradic-
tion, we conclude that it must be false.

Universal quantifier: ∀x : D. P(x)

To prove a “universally quantified” statement ∀x : D. P(x), you can do
one of the following:

1. Let d stand for an arbitrary element of the domain D, and prove Warning: note it is common practice to
reuse the same variable name x instead
of creating a new name d.

P(d). Arbitrary means we don’t assume anything about d except the
fact that it is in the domain D. This means that the same proof will
work no matter what specific element of D might be filled in for d.

Let d be an arbitrary D; we must show P(d).

Proof of P(d), supposing only that d is an element of D

Therefore, since d was arbitrary, in fact ∀x : D. P(x).

2. Use induction.

Existential quantifier: ∃x : D. P(x)

To prove an “existentially quantified” statement ∃x : D. P(x):

1. Pick a specific d (a “witness”) in the domain D and prove P(d).

To show ∃x : D. P(x), we will in fact show that this is true specif-
ically for d.

Proof of P(d)
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Since we have shown P(d), and d is an element of D, therefore
∃x : D. P(x).

2. Use a proof by contradiction.

We must show ∃x : D. P(x). For the purpose of obtaining a con-
tradiction, let us suppose the opposite, that is, ∀x : D. ¬P(x).

Derive a contradiction

Therefore, since the assumption that ∃x : D. P(x) is false led to
a contradiction, we conclude that it must be true.

Examples

Example.
P↔ ¬(Q ∨ R)

Proof. To show P ↔ ¬(Q ∨ ¬R), we will show both directions sepa-
rately.

(→) We must show P→ ¬(Q∨¬R), so suppose P is true; we will
show ¬(Q ∨ ¬R).

¬(Q∨¬R) is equivalent to ¬Q∧R. To prove this, we will show
each separately.

To prove ¬Q, we will use a proof by contradiction. Sup-
pose Q is true.

Contradiction, using P and Q

Since assuming Q led to a contradiction, in fact we must
have ¬Q.

Proof of R, using P

Since we have shown both ¬Q and R, therefore ¬Q∧R, which
is equivalent to ¬(Q ∨ ¬R).

(←) We must show ¬(Q∨R)→ P, so suppose ¬(Q∨R); we will
show P.
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Proof of P, using ¬(Q ∨ R)

Example. If n is an odd integer, then n2 is also odd. Translation:

∀n :Z. Odd(n)→ Odd(n2).

Proof. To show ∀n : Z. Odd(n) → Odd(n2), let k be an arbitrary
integer; then we must show that Odd(k)→ Odd(k2).

To show Odd(k)→ Odd(k2), suppose Odd(k) is true, that is, there
exists an integer j such that k = 2j + 1. Then we must show that
Odd(k2) is true, that is, there exists an integer p such that k2 = 2p+
1.

k2 = (2j + 1)2 = 4j2 + 4j + 1 = 2(2j2 + 2j) + 1, so we can
pick p = 2j2 + 2j, which is an integer since j is an integer.

Therefore, Odd(k)→ Odd(k2).

Therefore, since k was arbitrary, Odd(n) → Odd(n2) for all integers
n.

Example. If n is an integer and 3n + 2 is odd, then n is odd. Transla-
tion:

∀n :Z. Odd(3n + 2)→ Odd(n)

Proof. Let m be an arbitrary integer; we must show Odd(3m + 2) →
Odd(m).

We will do this by showing the contrapositive, ¬Odd(m)→ ¬Odd(3m+

2), that is, Even(m)→ Even(3m + 2).

So suppose Even(m), that is, there exists an integer k such that
m = 2k. We must show Even(3m + 2), that is, 3m + 2 = 2j
for some integer j.

We calculate as follows: 3m + 2 = 3(2k) + 2 = 6k + 2 =

2(3k + 1). Thus, j = 3k + 1 is the desired integer such
that 3m + 2 = 2j, so Even(3m + 2).

Thus, since we were able to show Even(3m+ 2) under the sup-
position that Even(m), therefore Even(m)→ Even(3m + 2).

Therefore, the contrapositive Odd(3m+ 2)→ Odd(m) is also true.

Since m was an arbitrary integer, this shows that ∀n : Z. Odd(3m +

2)→ Odd(m).
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Example. Every odd integer is not even. Translation:

∀n :Z. Odd(n)→ ¬Even(n).

Note that this may seem obvious, but since we have defined
Even(n) = ∃k : Z. n = 2k and Odd(n) = ∃k : Z. n = 2k + 1, the
fact that they are negations of each other does not follow automati-
cally from the definitions.

Proof. Let n be an arbitrary integer; we must show Odd(n) →
¬Even(n).

Suppose Odd(n), that is, there exists some integer k such that n =

2k + 1. We must show ¬Even(n).

For the purpose of obtaining a contradiction, suppose other-
wise, that is, suppose Even(n), which means n = 2j for some
integer j.

We now have n = 2k + 1 and n = 2j. Hence 2k + 1 =

2j. Solving for j, we get j = k + 1/2, but this is impos-
sible: we assumed that j and k are both integers, and 1/2
more than an integer can never be another integer.

Since the assumption of Even(n) led to a contradiction, in fact
we must have ¬Even(n).

Since we have shown ¬Even(n) under the assumption of Odd(n),
therefore Odd(n)→ ¬Even(n).

Therefore, since n was arbitrary, we conclude that every odd integer
is not even.

Note that the inverse, ∀n : Z. ¬Odd(n)→ Even(n), is also true, but
more difficult to prove. It follows from the fact that ∀n : Z. Even(n) ∨
Odd(n), but proving this fact requires the Division Algorithm.
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