
Discrete Mathematics Lecture Notes

Brent Yorgey

April 29, 2025

These are my lecture notes for MATH 240, Discrete Mathematics, at Hendrix
College.

1

1 Introduction (Wednesday 22 January)

1.1 Setup

• Go around, greet everyone and learn their names.

1.2 First day activities

Introduce myself (with slide show). Explain what “Discrete Math” is all about:
math is a web of connections, not a linear chain of topics. Discrete vs continuous.
Math needed to be a good programmer. Big themes: (1) formal notation is a
superpower! (2) Thinking and expressing ourselves using rigorous logic!

1.3 Syllabus

Show class website. Go over syllabus. Homework, quizzes. Engagement points,
learning goals.

Homework: fill out survey, install Disco.

1.4 Introduction to Disco

S’25: Show Disco. Get them all to bring it up, play around with it, talk to
neighbors, share insights. Go over some of the basics.
This went well in S’23 but can’t do it in S’25 since replit doesn’t work any more.
Have to get them to install it for homework. Maybe mention that I’m looking
for someone to work on building a web UI over the summer.

With whatever time is left, do a basic introduction to Disco. Get them to
tell me things to try!

2

2 Introduction to Disco (Friday 24 January)

2.1 Setup

• Go over syllabus (if not already done).

• Show them how to make an office hours appointment. Encourage them to
email or message me on Teams.

• Note first HW assignment is now posted on website.

2.2 Disco Arithmetic and Functions

Everything in Disco has a type which tells us what kind of value it is (or will be).
We can ask Disco what type something has with the :type command. When
we define a variable or function, we write

name : type

to say what type it has. Every definition must have a type.
If we ask for the type of a number like 3, Disco tells us it has type N:

Disco> :type 3

3 : N

N stands for natural numbers, and denotes one of the non-negative counting
numbers 0, 1, 2, 3, . . . and so on. (Note this fancy style of writing capital letters
with a double line in the middle is called “blackboard bold”, and is the stan-
dard way mathematicians write N and other similar types we will meet soon.
However, you do not have to use fancy symbols when writing Disco code. For
example, N can instead be written N.)

A collection of numbers is closed under a certain operation if doing that op-
eration on two of the numbers always gives another such number. For example,
the natural numbers are closed under addition (that is, adding any two natural
numbers gives another natural number) and under multiplication (multipltying
any two natural numbers gives another natural number).

Disco> :type 3 + 5

3 + 5 : N
Disco> :type 3 * 5

3 * 5 : N

However, the natural numbers are not closed under subtraction, because sub-
tracting two natural numbers might not always result in a natural number. For
example, 2−5 is not a natural number. If we want to be able to do subtraction,
we must include all negative numbers along with positive. This bigger set of
numbers . . . ,−3,−2,−1, 0, 1, 2, 3, . . . is called the integers.

Disco> :type 3 - 5

3 - 5 : Z

3

Note it does not matter whether the result would actually be negative or not.
Disco does not actually simplify/evaluate things to figure out what type they
are. In fact, the whole point is to be able to tell what kind of value we will get
before actually trying to evaluate an expression.

Disco> :type 3 - 1

3 - 1 : Z

Similarly, N is not closed under division, and Disco has other types to handle
that, just like it has Z to handle subtraction, but we’ll talk about them later.

We can define our own functions in Disco. First, we give the name of the
function and its type, which will be something like A -> B where A is the type
of the function’s inputs, and B is the type of the outputs. Then we define what
output the function should give for each input.

double : N -> N

double(n) = 2n

If we write the above definition of double in a .disco file, we can load it at the
Disco prompt using the :load command, then try it on some inputs:

Disco> :load double.disco

Loading double.disco...

Loaded.

Disco> double(2)

4

We can also attach tests to our functions.

!!! double(0) == 0

!!! double(2) == 4

!!! double(7) == 14

!!! forall n : N. double(n) >= 0

double : N -> N

double(n) = 2n

Tests can either be simple true or false tests, or they can have a forall to say
that something should be true for every value of a certain type. When we :load
this file, Disco will run the tests and report whether they succeed.

Disco> :load double.disco

Loading double.disco...

Running tests...

double: OK

Loaded.

If we try changing the double(n) >= 0 test to double(n) > 0, we can see that
the test fails:

4

Disco> :load double.disco

Loading double.disco...

Running tests...

double:

- Test is false: ∀n. double(n) > n

Counterexample:

n = 0

Loaded.

However, another way to express a correct test would be as follows:

!!! forall n : N. (n == 0) or double(n) > 0

As a final example, let’s implement factorial (although it is already built in).
Recall that n! = n · (n− 1) · (n− 2) · · · · · 1. Another way to write this is

n! = n · (n− 1)!

If we add a “base case” 0! = 1, this becomes a perfectly viable way to define
factorial. We could transcribe it into Disco as follows:

fac : N -> N

fac(0) = 1

fac(n) = n * fac (n-1)

Unfortunately, this is a type error. The reason is that since the input to fac is
supposed to be a natural number, that means n− 1 must be a natural number,
but it cannot be since it uses subtraction. We can use the .- operator instead,
which works on natural numbers (you will explore what this operator does for
homework).

fac : N -> N

fac(0) = 1

fac(n) = n * fac (n .- 1)

5

3 Introduction to Propositional Logic (Monday
27 January)

• Write two problems on the board:

– “30 people each buy a ticket to see the heffalump. The owner pays
$12 for food and ends up with $33 in profit. How much does one
ticket cost?”

– “In what circumstances does the following loop stop?”

while (tickets < 30 or (!heffalumps.isEmpty() and not(count > 5))):

...

Have them work on solving the problems with their neighbors. How did you
solve the first one? (algebra.) How did you solve the second? (talking, natural
language.) Which was easier? (the first one). Formal notation is a superpower!
People used to solve algebra problems using natural language too. Our goal:
allow you to solve the second problem using a formal language too.

Every programming language has Boolean true/false values. (Named for
George Boole, English mathematician, 1815–1864, “The Laws of Thought”
(1854).) Where have we seen them in Disco? We’re going to learn how to
manipulate them according to formal algebraic rules.

3.1 Propositions

Definition 3.1. A proposition is a declarative statement that can be true or
false.

Example. • “Washington, D.C. is the capital of the United States.” (true)

• “Toronto is the capital of Canada.” (false proposition)

• “10 is divisible by 3.” (false)

• “10 is even.” (true)

Example. Some non-examples of propositions:

• 6

• “Please hold this.”

We will use p, q, r, s, P,Q,R, S to stand for arbitrary propositions. Our goal
is to develop a language for writing down formal, precise propositions and ma-
nipulating them. Formal, algebraic notation is a superpower!

3.2 Propositional logic connectives

Our goal is to see ways to build more complex propositions from simpler ones.

6

Negation

Definition 3.2. Let p be a proposition. The negation of p is written ¬p (or p)
and read “not p” or “It is not the case that p.”

We can make a truth table showing the truth value of ¬p for each possible
truth value of p:

p ¬p
T F
F T

We can also get Disco to show us the truth table for ¬ using the :table

command:

Disco> :table not

F T

T F

Conjunction

Definition 3.3. The conjunction of propositions p, q is written p ∧ q (“p and
q”). It is true when both p and q are true, and false otherwise.

Let’s make a truth table. Notice that the truth table for ¬p needed two
rows, one for T and one for F. The truth table for p∧ q will need four rows, one
for each possible combination of truth values for p and q.

p q p ∧ q
T T T
T F F
F T F
F F F

Example. Conjunction works just like we expect in natural language. Consider:
“It is not raining today and I had eggs for breakfast.”

This is true if both parts are true. If it’s raining, the statement is false. If
I ate something other than eggs, it’s false. Of course it’s definitely false when
it’s raining and I ate something other than eggs.

If we let r = “It is raining today” and e = “I had eggs for breakfast”, then
we can translate this sentence into propositional logic as

¬r ∧ e.

Note that negation has “higher precedence” than conjunction (it has “stickier
glue”) so this is unambiguous. It does not mean ¬(r ∧ e), which would be
different. If in doubt, just use parentheses: (¬r) ∧ e.

7

Disjunction

Definition 3.4. The disjunction of p, q is written p ∨ q (“p or q”). It is false
when both are false, and true otherwise.

p q p ∨ q
T T T
T F T
F T T
F F F

The symbols ∧ and ∨ are easy to mix up. Just remember that ∧ looks like
a capital “A” for “And”, ∨ looks like a capital “V” for “Vote” (a vote is when
you choose between options).

There’s a good reason the symbols are upside down versions of each other:
they are “opposite” (the mathy word is “dual”) in the sense that if we consider
an opposite world where everything false becomes true and vice versa, then ∧
becomes ∨ and vice versa. Just look at their definitions: note how the definition
of ∨ is the same as that for ∧ but with all the T’s and F’s switched.

The way we usually think about p∨ q, though, is that p∨ q is true whenever
at least one of p, q is true.

Which statement from the side board does this correspond to? (The one
about prerequisites.) We use the word “or” with two different meanings in
English. This one, where it’s OK for both things to be true, is called inclusive
or. The other is called exclusive or, and written p ⊕ q. It is true when exactly
one of p, q is true, and false otherwise. (Put another way, it is true when p and q
are different, and false when they are the same.) Exclusive or is very important
in computer science, but rarely comes up in mathematical logic. We’ll return
to it later in the course perhaps.

Example. Let r = “It is raining today”, e = “I had eggs for breakfast”, and
c = “I had cereal for breakfast.” Consider the sentence “Either it is raining,
or I ate cereal and not eggs for breakfast.” How do we translate this in to
propositional logic?

r ∨ (c ∧ ¬e)

(Notes: not clear which kind of or to use; it doesn’t matter too much. The
parenthesis may technically not be required, but it’s best to include them.)

What about “If I ate eggs for breakfast, then it is raining”?

8

4 Implication & Propositional Equivalences (1.3)
(Wednesday 29 January)

Let r = “It is raining today”, e = “I had eggs for breakfast”, and c =
“I had cereal for breakfast.” Consider the sentence “Either it is raining, or I
ate cereal and not eggs for breakfast.” How do we translate this in to proposi-
tional logic?

r ∨ (c ∧ ¬e)

(Notes: not clear which kind of or to use; it doesn’t matter too much. The
parenthesis may technically not be required, but it’s best to include them.)

Booleans in Disco In Disco, T and F are values of type Bool. We can write
logical AND using and, &&, /\, or ∧; similarly for OR. NOT can be written not

or ¬.
We can get Disco to show us truth tables for operators, e.g. :table not or

:table /\.

Implication

Definition 4.1. Let p, q be propositions. The conditional or implication “if p,
then q” is written p→ q.

p is the premise or hypothesis. q is the conclusion. (Note, there are lots of
words for everything! Don’t memorize, but you will need to be familiar with
them.) Let’s figure out what the truth table should be. I like to think of it
this way: if someone makes you a promise of the form “if . . . then . . . ”, in what
scenarios have they lied to you?

Consider the propositions

p = “You fulfill all the requirements for an A.”

q = “You get an A.”

In the syllabus I have in fact promised that the proposition p→ q is true. Let’s
consider every possible scenario; in which scenario should you be mad at me for
lying to you?

• You complete all the requirements and get an A. This is great; I have kept
my promise.

• You complete all the requirements but don’t get an A. Obviously in this
scenario I lied and you should be super mad at me, and probably complain
to my department chair or the Provost.

• Let’s next consider the scenario where you don’t complete the require-
ments for an A, and don’t get an A. You might be mad at yourself but
you certainly can’t be mad at me. I still made a true statement.

9

• The last case is the one that sometimes trips people up: what if you don’t
complete the requirements, but you get an A anyway? You obviously
won’t be upset in this scenario (though other students might!), but did I
lie? Actually, I didn’t. I only said what would happen if you DO complete
the requirements. I am free to do whatever I want (including giving you
an A anyway) if you don’t. (In fact, I occasionally do this in special
circumstances!)

So overall we have the following truth table:

p q p→ q
T T T
T F F
F T T
F F T

In other words, the only scenario in which an implication p → q is false is
when p is true but q is false. It is true in all other cases. “If the premise is false,
anything goes!”

Note that we have lots of ways to express conditionals in natural language
besides just “if p then q”. For example, “if p, (then) q”, “p implies q”, “q if p”,
“p only if q”, and so on. If you’re not sure, make a truth table!

Definition 4.2. Given an implication p→ q, we have:

• the converse is q → p

• the inverse is ¬p→ ¬q

• the contrapositive is ¬q → ¬p (the contrapositive is the inverse of the
converse or vice versa)

Theorem 4.3. An implication and its contrapositive always have the same truth
value. On the other hand, an implication does not always have the same truth
value as its inverse or converse.

Talk to your neighbor and convince yourself that an implication has the same
truth value as its contrapositive. How would we prove this?

4.1 Tautologies and equivalence

Definition 4.4. Let p, q be propositions. The biconditional p ↔ q (“p if and
only if q”) is true when p and q have the same truth value, and false otherwise.

Remark. We often abbreviate “if and only if” as “iff”.

Definition 4.5. A proposition that is always true, no matter the values of the
propositional variables it contains, is a tautology. One that is always false is a
contradiction.

10

Example. Get the class to come up with some examples of tautologies, contra-
dictions, and some that are neither.

How would we prove these? Use logical reasoning, or use a truth table. Or
use Disco!

Definition 4.6. Two propositions that always have the same truth values are
logically equivalent, written p ≡ q. Alternatively, p ≡ q when p ↔ q is a
tautology.

Example. Show that p→ q ≡ ¬p ∨ q.
Make a truth table:

p q p→ q ¬p ¬p ∨ q
T T T F T
T F F F F
F T T T T
F F T T T

Notice that the columns for p → q and ¬p ∨ q are exactly the same, which
means that these two propositions always have the same truth value. Hence
they are logically equivalent.

Example. Show that p→ q ≡ ¬q → ¬p.

11

5 Algebraic laws for propositional logic (Friday
31 January)

5.1 Core laws

I’m going to show you a core set of logical equivalences that you should know. All
others can be derived using these. The goal is to get rid of truth tables: we used
them to bootstrap ourselves into understanding propositional logic operations,
but from now on we can work more algebraically.

There are two important organizing/mnemonic principles:

1. Most equivalences have an “opposite world” version where we switch ∧/∨
and T/F.

2. We can get some intuition by thinking in terms of multiplication and
addition:

• T is kind of like 1

• F is kind of like 0

• ∧ is kind of like ×
• ∨ is kind of like +, but with a maximum result of 1

This analogy is not perfect but it works well as a mnemonic to help us
remember some of the equivalences.

Name equivalence “opposite world” equivalence
Identity p ∧ T ≡ p p ∨ F ≡ p
Annihilation p ∧ F ≡ F p ∨ T ≡ T
Idempotence p ∧ p ≡ p p ∨ p ≡ p
Commutativity p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p
Associativity (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
Distributivity p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
De Morgan ¬(p ∧ q) ≡ ¬p ∨ ¬q ¬(p ∨ q) ≡ ¬p ∧ ¬q
Contradiction/Tautology p ∧ ¬p ≡ F p ∨ ¬p ≡ T

Remark. Idempotence, “opposite world distributivity”, and the De Morgan laws
are the surprising ones that don’t have a nice counterpart in terms of multipli-
cation and addition.

Then there are three special equivalences which don’t have opposite world ver-
sions:

Double negation elimination ¬(¬p) ≡ p
Implication p→ q ≡ ¬p ∨ q
Iff p↔ q ≡ (p→ q) ∧ (q → p)

12

Note that associativity means we are justified in writing things like

p ∧ q ∧ r ∧ s ∧ t ∧ . . .

with no parentheses, since where we put parentheses doesn’t matter. (But if we
mix ∧ and ∨ we definitely need parentheses.)

You should convince yourself of all these, using either a truth table or think-
ing about a logical argument.

From now on, we don’t have to use truth tables anymore, we can prove any
equivalence we want using these core equivalences. Here are a couple examples.

Example. Prove (p→ q) ∧ (p→ r) ≡ p→ (q ∧ r).

(p→ q) ∧ (p→ r)
≡ { Implication }

(¬p ∨ q) ∧ (¬p ∨ r)
≡ { Factor out ¬p (distributivity, backwards) }
¬p ∨ (q ∧ r)

≡ { Implication }
p→ (q ∧ r)

S’20: Only made it to here. Can do more examples if time.

Example. Show ¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬q.

¬(p ∨ (¬p ∧ q))
≡ { DeMorgan }
¬p ∧ ¬(¬p ∧ q)

≡ { DeMorgan }
¬p ∧ (¬¬p ∨ ¬q)

≡ { Double negation elimination }
¬p ∧ (p ∨ ¬q)

≡ { Distributivity }
(¬p ∧ p) ∨ (¬p ∧ ¬q)

≡ { Contradiction }
F ∨ (¬p ∧ ¬q)

≡ { Identity }
¬p ∧ ¬q

If yet more time left, show (p ∧ q) → (p ∨ q) is a tautology, by deriving
equivalence to T.

13

6 Predicates and Quantifiers (1.4, 1.5) (Monday
3 February)

By this point we’ve caught up with the ancient Greeks. However, it turns out
that propositional logic isn’t expressive enough to talk about everything we
want to reason about mathematically. In particular we can’t make general sorts
of statements involving words like “all” or “some”. We are able to write tests
with forall in Disco; let’s think more formally about what this means.

6.1 Predicates

Consider the statement
x+ 2 = 5.

We actually used this as an example on the first day of class: it is not a propo-
sition because we can’t say whether it is true or false; it depends on x.

Disco> :test x + 2 == 5

Error: there is nothing named x.

https://disco-lang.readthedocs.io/en/latest/reference/unbound.html

However, it’s almost a proposition: it’s “waiting for” a value of x to be
filled in, at which point it will be a proposition. We can make this explicit by
defining P (x) to be the statement “x + 2 = 5”; then P (x) is a predicate, that
is, a function that takes x as input and outputs a proposition.

P : N -> Bool

P(x) = x + 2 == 5

Example.

• P (2) is the proposition 2 + 2 = 5 (which happens to be false).

• P (3) is the proposition 3 + 2 = 5 (which happens to be true).

We can also make multi-argument predicates, just like we can have functions
of multiple variables. For example, let T (x, y) mean “x is less than the square
of y”.

T : N * N -> Bool

T(x,y) = x < y^2

6.2 Quantifiers

Definition 6.1. If P (x) is a predicate and D is some “domain” (i.e. set of
values, i.e. type) then

∀x : D. P (x)

(pronounced “for all x in D, P (x)”) is a proposition which is true iff P (x) is
true for every x in the domain D.

14

Remark. You also often see notation ∀x ∈ D.P (x).

Remark. D is called the domain of discourse. Sometimes mathematicians omit
writing it as part of the notation, and simply require that it be mentioned off
to the side somehwere what the domain of discourse is, but I think this is silly:
specifying the domain of discourse is not optional (it can determine whether
the proposition is true or false), so we should force ourselves to put it in the
notation, otherwise the notation is ambiguous.

Example. Disco> :test forall n:N. P(n)

- Certainly false: ∀n. P(n)

Counterexample:

n = 0

Disco> :test forall n:N. n >= 0

- Possibly true: ∀n. n >= 0

Checked 100 possibilities without finding a counterexample.

Disco> :test forall b:Bool. (b /\ b) == b

- Certainly true: ∀b. (b /\ b) == b

No counterexamples exist.

Disco> :test forall x:Z. x^2 >= 0

- Possibly true: ∀x. x ^ 2 >= 0

Checked 100 possibilities without finding a counterexample.

Remark. We should think of ∀ as being like a big “and”. That is,

∀x : D. P (x) ≡ P (x1) ∧ P (x2) ∧ P (x3) ∧ . . .

where x1, x2, x3, . . . are all the elements of the domain D. But writing out such
giant lists of propositions would be tedious; the domain could even be infinite,
as in the last example! But even though this is not literally true it will help us
think about what properties ∀ should have.

Definition 6.2. If P (x) is a predicate and D any domain, then

∃x : D. P (x)

(“there exists an x in D such that P (x)”) is a proposition which is true iff there
is at least one x in D such that P (x) holds.

Example. Disco> :test exists x:N. P(x)

- Certainly true: ∃x. P(x)

Found example:

x = 3

Disco> :test forall x:N. exists y:N. T(x,y)

- Possibly true: ∀x. ∃y. T(x, y)

Checked 100 possibilities without finding a counterexample.

Disco> :test forall y:N. exists x:N. T(x,y)

- Possibly false: ∀y. ∃x. T(x, y)

No example was found; checked 100 possibilities.

Counterexample:

y = 0

15

Remark. Dually to ∀, we can think of ∃ as a giant “or”, that is,

∃x : D. P (x) ≡ P (x1) ∨ P (x2) ∨ P (x3) ∨ . . .

even though it is not actually defined this way.

16

7 More quantifiers: De Morgan, examples (Wednes-
day 5 February)

7.1 Properties of ∀, ∃
Everything follows from thinking about ∀ in terms of ∧ and ∃ in terms of ∨!

First we have the De Morgan laws for quantifiers (see if they can come up
with these laws themselves!):

¬(∀x : D. P (x)) ≡ ∃x : D. ¬P (x)

¬(∃x : D. P (x)) ≡ ∀x : D. ¬P (x)

(There are other equivalences such as

∀x : D. (P (x) ∧Q(x)) ≡ (∀x : D. P (x)) ∧ (∀x : D. Q(x))

∃x : D. (P (x) ∨Q(x)) ≡ (∃x : D. P (x)) ∨ (∃x : D. Q(x))

but these are rarely all that useful.)

Example. What is the negation of ∀a :N. ∃b :N. (a = 0) ∨ (a+ b = 0)?

Translate each English sentence into formal logic.

Example. “Every natural number is less than or equal to its own square.”

∀n : N.n ≤ n2

Example. “The square of any integer is nonnegative.”

∀x : Z.x2 ≥ 0

Example. “1369 is a perfect square.”

∃n : N.n2 = 1369

Note that this is much nicer than trying to write something like

IsInteger(
√
n).

√
− is complicated, and we don’t know how to define IsInteger.

Example. “n is even.”
Even(n) = ∃k :Z. 2k = n.

Example. “n is odd.”

Odd(n) = ∃k :Z. 2k + 1 = n.

Or we could define it as ¬Even(n). (Actually slightly nontrivial to prove for-
mally that these are the same thing—we won’t be able to prove it until we go
over the Division Algorithm in April!)

Example. “If n is even, then n+ 2 is even.”

∀n :Z. Even(n)→ Even(n+ 2)

Note that bare variables in mathematical statements like this tend to hide an
implicit ∀!

17

8 Quantifier restriction (Friday 7 February)

How would we encode the (false) proposition “every even integer is equal to 2”?
We could write

∀x :Even. x = 2

Or, if we wanted to use a more primitive quantifier, we could equivalently write

∀x :Z. Even(x)→ (x = 2)

Draw some pictures. In general, suppose D is some domain and S is a subset,
and let S(x) be a predicate meaning “x is a member of S”. Then

∀x :S. P (x) ≡ ∀x :D. S(x)→ P (x).

Likewise, if D is some domain and S is a subset, then

∃x :S. P (x) ≡ ∃x :D. S(x) ∧ P (x).

As a final example, let’s encode the statement “Every even integer greater
than 2 can be written as the sum of two primes” in formal propositional logic.
Assume we have a predicate Prime(n) meaning “n is prime” (we will see how
to define this later).

∀n :N. (Even(n) ∧ n > 2)→ (∃p :N. (Prime(p) ∧ (∃q :N. Prime(q) ∧ n = p+ q)))

18

9 Introduction to proofs (Monday 10 February)

What is a proof ? In a court of law, a proof is convincing evidence. In math we
desire something more logically ironclad.

Definition 9.1. A proof is a logically valid argument that establishes the truth
of a statement. What this looks like can vary a lot depending on the context,
audience, and subject matter.

We distinguish two types of proofs (though it’s really more of a continuum).
A formal proof:

• Uses only axioms (assumptions) and things previously proved.

• Consists of a series of steps where each step is a valid logical inference
from previous steps or assumptions.

• Is often expressed in formal notation.

We will not write these! The only places you will ever see a real, formal proof is
(1) in a geometry class, or (2) a computer-checked formal proof (these are really
interesting, take my Functional Programming class if you want to learn more!).

In contrast, an informal proof:

• Uses only axioms and things previously proved (same as formal proofs!).

• May omit or combine steps.

• Is often expressed in natural language.

• In principle could be expanded into a complete formal proof.

• Has other humans as its audience.

We will start more towards the formal end so that you understand it.

9.1 Logical inference

What is a valid logical inference? We will leave this mostly to our intuition.
(Your book covers it in section 1.6 but it’s overwhelming and unhelpful, IMO.)
You have been using valid logical inferences your whole life. We’ll give just two
examples:

1. If A → B is true and A is true, then B is true. This is called modus
ponens but you don’t need to know that. One important point to make
is that we don’t have to just rely on our intuition to establish the validity
of this reasoning principle. We can encode it as a proposition and check
that it is a tautology (actually doing so makes for a nice exercise):

(A→ B) ∧A→ B ≡ T.

19

2. If A ∧B is true, then A is true. If you have established something of the
form A ∧ B, you can always just ignore one of the two parts if you wish.
Again, we can show this is valid by showing it is a tautology:

(A ∧B)→ A ≡ T.

There are many more; see your book for a list, if you like. But you’ll probably
be just fine.

Definition 9.2. A theorem is a statement that can be established to be true
via a valid proof. (There are other terms you can read about in your book, i.e.
“conjecture”, “lemma”, and so on, but we will discuss them as needed.)

9.2 How to Prove Things

See document, proofs.pdf. Just follow these three easy steps!

1. Translate the statement into propositional logic (using ∧, ∨, ¬, →, ∀, and
∃).

2. Write a proof outline corresponding to the propositional logic formula.

3. Use your intuition/insight/ingenuity/specific content knowledge to fill in
the missing bits.

This might feel a bit facetious (cf How To Draw An Owl meme), but also
serious: step 2 is mechanical, and gets us a lot of the way there; step 3 is the
step that requires some creativity/insight.

Let’s look at each propositional logic operator in turn, and look at how
to write an appropriate proof outline for each. (See “How to Prove Things”
document, proofs.pdf, for templates!)

9.2.1 p ∧ q

To prove a conjunction p ∧ q, prove p and prove q.
Give an example. Prove “3 < 5 ∧ 8 · 2 = 16”.

9.2.2 p ∨ q

To prove a disjunction p ∨ q, you can do any of the following:

1. Prove p.

2. Prove q.

3. Use a proof by contradiction (we will talk about this next class).

20

10 More proofs and proof examples (Wednes-
day 12 February)

10.0.1 p→ q

Remember, if p is false, we don’t care; in that case p → q is going to be true
no matter what. So we care about the case when p is true. In that case q had
better be true too! So to prove p → q we can (temporarily) suppose that p is
true, then show that q must be true in that imaginary world. (Note: “assume”
means “this is something we think is true”; “suppose” is just hypothetical, i.e.
expressing a “what if”.)

To prove an implication, p→ q, you can:

1. Temporarily suppose p is true, then prove q. (You will sometimes hear
this called a direct proof, but the name does not matter.)

2. Prove the contrapositive, that is, prove ¬q → ¬p. Sometimes this is easier.

10.0.2 p↔ q

To prove an if and only if, p↔ q, prove (p→ q) ∧ (q → p).

10.0.3 ¬p

To prove a negation ¬p:

1. Use De Morgan laws to “push the negation inwards”, then use one of the
other proof rules. For example, if you wanted to prove something of the
form ¬(p ∧ q), first use a De Morgan law to transform this into ¬p ∨ ¬q;
then use one of the methods listed above for proving a disjunction.

2. Prove p→ F. (Note p→ F ≡ ¬p ∨ F ≡ ¬p.)

Example. Prove P → (Q ∨R).

Proof. We must prove P → (Q ∨ R). So suppose P is true; we will show
(Q ∨R).

To show (Q ∨R), we will in fact show that Q holds.

Proof of Q, using P

Since we showed Q, therefore Q ∨R.

Since we showed Q ∨R under the supposition P , therefore P → (Q ∨R).

Example. Prove (A ∨B)→ ¬C using a proof by contrapositive.

Proof. We must show (A ∨ B)→ ¬C, which we will do by proving the contra-
positive, namely, C → ¬(A ∨B).

21

To prove C → ¬(A ∨B), suppose C is true; we will show ¬(A ∨B).

¬(A ∨ B) is equivalent to ¬A ∧ ¬B, which we will prove by showing
each individually.

Proof of ¬A, using C

Proof of ¬B, using C

Thus, we have shown ¬A ∧ ¬B, or, equivalently, ¬(A ∨B).

Since we showed ¬(A ∨B) while supposing C, therefore C → ¬(A ∨B).

Therefore, the contrapositive holds: (A ∨B)→ ¬C.

Example. Prove that (2n+ 1 > 6)→ (n > 2).

Proof. To prove (2n + 1 > 6) → (n > 2), suppose (2n + 1 > 6), then we must
show (n > 2).

• Starting from (2n+ 1 > 6) we can reason as follows:

2n+ 1 > 6
→ { subtract 1 from both sides }

2n > 5
→ { divide both sides by 2 }

n > 5/2
→ { 5/2 > 2, and > is transitive }

n > 2

Therefore, since we have shown that n > 2 must be true under the assumption
that 2n+ 1 > 6, therefore (2n+ 1 > 6)→ (n > 2).

10.0.4 ∀x : D.P (x)

To prove a “universally quantified” statement ∀x : D. P (x):

1. Let c stand for an arbitrary element of the domain D, and prove P (c).
Arbitrary means we don’t assume anything about c except the fact that it
is in the domain D. This means that the same proof will work for every
single element in D.

Warning: note it is common practice to use the same variable name for x
and c.

2. Use induction (we will talk about this later in the course).

22

10.0.5 ∃x : D.P (x)

To prove an “existentially quantified” statement ∃x : D. P (x):

1. Pick a specific c (a “witness”) in the domain D and prove P (c).

2. Use a proof by contradiction.

Example. Prove: if n is an odd integer, then n2 is also odd.

First step: translate to predicate logic! Notice that it’s talking about a
variable n. It is really making a statement about all possible values of n. This
is common in mathematics, to make a “for all” statement just by mentioning
some variables without explicitly saying a word like “all” or “every”. So the
correct translation is

∀n :Z. Odd(n)→ Odd(n2).

Now, what does Odd(n) mean?

Definition 10.1. An integer n is odd if there is some integer k such that
n = 2k + 1.

That is, Odd(n) = ∃k :Z. n = 2k + 1.

We could also define odd as “not even”, but this more positive version will
be easier to work with. (Of course, we could prove that the two definitions
are equivalent—as a nice challenge you might like to try proving that ∀n :
Z. Odd(n) ↔ ¬Even(n). One direction is not too hard to prove; the other
direction will require something called the Division Algorithm which we will
learn about later.)

So let’s prove ∀n : Z. Odd(n) → Odd(n2). We start by introducing an
arbitrary integer n; then we have to prove Odd(n) → Odd(n2). This is an
implication, so we prove it by supposing that Odd(n) is true, and then proving
in that case Odd(n2) is true as well. We can expand the definition of Odd to
figure out what our assumption Odd(n) means and what we have to show for
Odd(n2). The whole thing goes like this:

Proof. To show ∀n :Z. Odd(n)→ Odd(n2), Let k be an arbitrary integer; then
we must show that Odd(k)→ Odd(k2).

To show Odd(k)→ Odd(k2), suppose Odd(k) is true, that is, there exists
an integer j such that k = 2j + 1. Then we must show that Odd(k2) is
true, that is, there exists an integer p such that k2 = 2p+ 1.

k2 = (2j + 1)2 = 4j2 + 4j + 1 = 2(2j2 + 2j) + 1, so we can pick
p = 2j2 + 2j, which is an integer since k is an integer.

Therefore, Odd(k)→ Odd(k2).

Therefore, since k was arbitrary, Odd(n)→ Odd(n2) for all integers n.

23

The above proof has a lot of detail to help us keep track of what is going on.
A more experienced mathematician might write something more like this:

Proof. Let n be an odd integer, and suppose n = 2k+1. Then n2 = (2k+1)2 =
4k2 + 4k + 1 = 2(2k2 + 2k) + 1, so n2 is odd as well.

But you are welcome and encouraged to include a lot of detail about what
you are doing especially as you are starting out.

24

11 More proof examples; proof by contradiction
(Friday 14 February)

Example. Prove that if n is an integer and 3n+ 2 is odd, then n is odd.

Again, the first step is to translate into predicate logic:

∀n :Z. Odd(3n+ 2)→ Odd(n).

Let’s try proving it.

Proof. Let n be an arbitrary integer. We must show Odd(3n+2)→ Odd(n).

To show Odd(3n+ 2) → Odd(n), suppose 3n+ 2 is odd; we must show n
is odd as well.

Since 3n + 2 is odd, by definition there is some integer k such that
3n + 2 = 2k + 1. Solving for n, we find that n = 2k+1

3 . . . but it is
unclear where to go from here. We need to show that n is of the form
2j+1 for some j, but it doesn’t really look like that. We declare this
proof attempt a failure.

However, we have another technique at our disposal for proving an impli-
cation: prove the contrapositive! (Note this proof uses ¬Odd(n) → Even(n),
which we technically haven’t proved, but we will assume it for now!)

Proof. Let m be an arbitrary integer; we must show Odd(3m+ 2) → Odd(m).

We will do this by showing the contrapositive, ¬Odd(m)→ ¬Odd(3m+2),
that is, Even(m)→ Even(3m+ 2).

So suppose Even(m), that is, there exists an integer k such that m =
2k. We must show Even(3m+2), that is, 3m+2 = 2j for some integer
j.

We calculate as follows: 3m+2 = 3(2k)+2 = 6k+2 = 2(3k+1).
Thus, j = 3k + 1 is the desired integer such that 3m + 2 = 2j,
so Even(3m+ 2).

Thus, since we were able to show Even(3m+2) under the supposition
that Even(m), therefore Even(m)→ Even(3m+ 2).

Therefore, the contrapositive Odd(3m+ 2)→ Odd(m) is also true.

Since m was an arbitrary integer, this shows that ∀n : Z. Odd(3m + 2) →
Odd(m).

25

11.1 Proof by contradiction

To prove p, prove ¬p→ F.
Most of the other proof techniques we have seen so far have applied to a

specific logical connective like ∧, ∨, →, and so on. This technique, however, is
a general technique that may be useful in proving any statement. The idea is
that in order to prove p, we may suppose that p is false, that is, suppose ¬p,
and from it derive a contradiction; this means that p must have been true in
the first place.

Note Rational(x) = ∃p :Z. ∃q :Z. (x = p/q).

Example. Prove that
√
2 is irrational.

First, translate to formal logic notation: ¬(Rational(
√
2)).

This is a classic proof by contradiction1 discovered by the ancient Greeks.

Proof. By contradiction. Suppose that
√
2 is rational. Then by definition there

exist integers a and b, with b ̸= 0, such that a/b =
√
2. We may further assume

that a and b have no common factors, that is, a/b is reduced to lowest terms
(if it were not, we could just cancel common factors until none are left, which
would not affect equality with

√
2). We can reason as follows:

√
2 = a/b

→ { Multiply both sides by b }
b
√
2 = a

→ { Square both sides }
2b2 = a2

→ { Definition }
a2 is even

→ { Contrapositive of lemma proved in class }
a is even

Since a is even, there must be an integer c such that a = 2c. Continuing,

2b2 = a2

→ { Substitute a = 2c }
2b2 = (2c)2

→ { Expand }
2b2 = 4c2

1Advanced footnote: sometimes, especially when thinking in terms of computation, one
wants to use a so-called constructive logic, which allows only constructive proofs, that is, proofs
which actually show how to find things which are claimed to exist. Such logic necessarily does
away with proof by contradiction (and a few other equivalent principles, such as the fact that
¬p ∨ p ≡ T). However, this proof is still a valid proof in a constructive logic: it is actually
proving a statement of the form ¬Rational(

√
2) by proving Rational(

√
2) → F, which is still

valid even in constructive logic. So from a pedantic point of view this is not actually a proof
by contradiction after all, it is just the normal way that one proves a negation. However, for
the purposes of this class we certainly won’t be making this distinction; I include it in the
notes just as an interesting aside.

26

→ { Divide both sides by 2 }
b2 = 2c2

But this implies—using identical reasoning as for a—that b is even as well.
Hence a and b are both even and have a prime factor of 2 in common. But
a and b supposdely share no common factors! This is a contradiction, and we
may thus conclude that our assumption—namely, that

√
2 is rational—must be

false!

Example. Another example of proof by contradiction (for you to work out):
prove that in any right triangle, a+ b > c, where the length of the hypotenuse
is labelled c and the lengths of the two other sides are labelled a and b. (Hint :
use the Pythagorean Theorem!)

12 No class: Mid-Winter Break (Monday 17
February)

13 No class: Snow day (Wednesday 19 Febru-
ary)

27

14 Introduction to set theory (Friday 21 Febru-
ary)

14.1 Introduction to set theory

Definition 14.1. A set is an unordered, finite or infinite collection of objects,
called elements or members of the set. Sets cannot contain a given element more
than once, and the order of elements in a set does not matter. Put another way,
the only thing that matters about a given element is whether it is in the set or
not.

Remark. We typically use capital letters to stand for sets.

The notation x ∈ S is a proposition that means “x is an element of set S”;
x /∈ S is an abbreviation for ¬(x ∈ S).

14.2 Writing sets

There are two basic ways to write down a set.

1. We can write a (finite) set by listing its elements, separated by commans,
within curly braces.

Example. S = {1, 3, 5, 7, 9}.

We can also sometimes abbreviate using dots:

Example. S = {1, 2, 3, . . . , 100}.

2. We can also use set builder notation, whose basic form is {value | conditions}.
Example. {x | x is a positive integer less than 5}
Example. {x | x ∈ Z+, x < 5}
Example. {x | x is an odd integer, 0 ≤ x < 100}
Example. {2x+ 5 | x ∈ N, 0 ≤ x ≤ 10} = {5, 7, . . . , 25}

14.3 Some special sets

There are several sets that occur so frequently we give them special names.

• N = {0, 1, 2, 3, . . . } is the (infinite) set of all natural numbers. (Note
controversy.)

• Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the set of integers. (Z stands for Zahlen,
which means “numbers” in German.)

• Z+ = {1, 2, 3, . . . } is the set of positive integers.

• Q = {p/q | p ∈ Z, q ∈ Z, q ̸= 0} is the set of rational numbers.

• R is the set of real numbers.

• C typically represents the set of complex numbers, though we will not use
complex numbers in this class.

28

15 More set theory (Monday 24 February)

15.1 Subsets and equality

Definition 15.1. A is a subset of B, written A ⊆ B, iff every element of A is
also an element of B, that is,

∀a ∈ A. a ∈ B.

BA

Remark. According to the definition, given a set A, is A ⊆ A? That is, is a set
a subset of itself?

Intuitively, given the way we typically use the word “subset” in English,
we might expect the answer to be “no”. However, given the definition above,
A ⊆ A is true, since every element of A is an element of A.

(Note there is a notion of being a strict subset : A ⊂ B, “A is a strict subset
of B”, means that A ⊆ B but A ̸= B; however, it is rarely useful.)

Why do we define subset this way? It would actually make things more
complicated, with more weird special cases, if we disallowed a set from being a
subset of itself.

Now that we have defined subset, we can define equality of sets:

Definition 15.2. A = B iff (A ⊆ B) ∧ (B ⊆ A).

Remark. This is typically how we prove that two sets are equal: show that each
is a subset of the other. We might want to do this, for example, in a situation
where we have two sets which are described in very different ways, and it is
an interesting and nontrivial fact that these two different descriptions actually
result in the same set.

Example. Let A = {2x + 3 | x ∈ Z} and B = {x | x ∈ Z,Odd(x)}. Prove that
A = B.

Proof. By definition, A = B if A ⊆ B and B ⊆ A. We will prove both.

• We will first show A ⊆ B. By definition, this means ∀y ∈ A.y ∈ B. So let
a ∈ A be an arbitrary element of A. We must show a ∈ B as well.

– By definition of A, if a ∈ A there must exist some x ∈ Z such that
a = 2x + 3. We can rewrite this as a = 2(x + 1) + 1, thus showing
that a is odd, and hence a ∈ B.

Therefore, since a ∈ A was arbitrary and we showed a ∈ B, therefore by
definition A ⊆ B.

29

• Next, we show B ⊆ A. . . .

Definition 15.3. The empty set, written ∅ or {}, is the set with no elements.

Question: is ∅ ⊆ N?
By definition, this means ∀a ∈ ∅. a ∈ N, so it really comes down to what

we do with a ∀ whose domain is empty. In fact, such a ∀ must be true, which
we can see in a few different ways.

• One way to understand this intuitively is to think about when someone
making a quantified statement has lied. If I say “every February the 47th,
I fly to the moon”, that should be a true statement: I am not lying because
there is never any February 47th to prove otherwise.

• We can also recall that we can turn a quantifier with a restricted domain
into a quantifier with a larger domain using an implication. In particular,

∀a ∈ ∅. a ∈ N ≡ ∀a : D. (a ∈ ∅)→ (a ∈ N)

where D can be any domain we like. a ∈ ∅ is always false since ∅ has no
elements; and an implication whose hypothesis is false is always true.

Show how we can use and create sets in Disco. In Disco, the type of a finite
set with elements taken from the domain (type) T is Set(T).

30

16 Set operations (Wednesday 26 February)

Today we’ll learn about some operations we can do on sets.

16.1 Cardinality

The cardinality of a finite set is the number of distinct elements it contains,
i.e. a natural number. The cardinality of a set A is written |A|.
Example. |{1, 3, 5}| = 3. |{2, 4, . . . , 100}| = 50. |∅| = 0.

Notice we can’t yet say anything about the cardinality of an infinite set!

16.2 Cartesian product

Definition 16.1. If A and B are sets, the Cartesian product of A and B is the
set of all possible ordered pairs of elements from A and B. That is,

A×B = {(a, b) | a ∈ A, b ∈ B}.

Example. Let A = {1, 2, 3} and B = {△,□}. Then

A×B = {(1,△), (1,□), (2,△), (2,□), (3,△), (3,□)}.

We can think of this in terms of filling out a 2D grid where the rows are labeled
with elements from A and the columns with elements from B:

△ □
1 (1,△) (1,□)
2 (2,△) (2,□)
3 (3,△) (3,□)

Each cell in the grid corresponds to one possible combination of an element
from A with an element from B.

From this we can also see that for finite sets, the cardinality of a Cartesian
product is the product of the cardinalities:

|A×B| = |A| × |B|.

16.3 Power set

Definition 16.2. The power set of a set A, written P(A), is the set of all
possible subsets of A.

Example. Let A = {1, 2, 3}. Then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

31

How do we know if we’ve gotten them all? Notice that to make a particular
subset we get to independently choose whether each element will be in the subset
or not. So we associate a Boolean variable to each element of the set, and list
all possible combinations of T and F, just like we would when making a truth
table:

1? 2? 3? subset
T T T {1, 2, 3}
T T F {1, 2}
T F T {1, 3}
T F F {1}
F T T {2, 3}
F T F {2}
F F T {3}
F F F ∅

Or we could just dispense with the booleans and make a table where we
either list or don’t list each element in all possible combinations:

1? 2? 3?
{ 1 2 3 }
{ 1 2 }
{ 1 3 }
{ 1 }
{ 2 3 }
{ 2 }
{ 3 }
{ }

This line of reasoning shows us that in general, if A is a finite set and |A| = n,
then |P(A)| = 2n. Note this even works when A is empty: we have P(∅) = {∅}
(since the empty set is the only subset of itself), and 20 = 1.

Notice how this is all pointing to the fact that we should allow both A ⊆ A
and ∅ ⊆ A. The entire set and the empty set both show up naturally when
enumerating every possible combination of true/false values, and we get an
elegant formula, 2n, for the number of subsets including the entire set and the
empty set. If we were to disallow these from being subsets, we would end up
with a less elegant formula like 2n−2 for the number of subsets, and would have
to use the word “except” when describing how to generate all possible subsets.
We would essentially be fighting against the universe. The entire set and the
empty set want to be subsets.

16.4 Intersection

Definition 16.3. The intersection of sets A and B is the set of elements com-
mon to both:

A ∩B = {x | x ∈ A ∧ x ∈ B}.
We can visualize this using a Venn diagram:

32

BA

16.5 Union

Definition 16.4. The union of sets A and B is the set of elements which are
in either:

A ∪B = {x | x ∈ A ∨ x ∈ B}.

We can visualize it as follows:

BA

What can we say about the cardinality of A∪B? First, we can give it some
lower and upper bounds:

max(|A|, |B|) ≤ |A ∪B| ≤ |A|+ |B|.

But we can also say something exact:

|A ∪B| = |A|+ |B| − |A ∩B|.

If we add the cardinality of A and B, any elements common to both are counted
twice, so we have to subtract them in order to find the cardinality of their union
(which has no duplicates). This is (a simple special case of) the Principle of
Inclusion-Exclusion, or PIE.

Remark. The notation for intersection and union is not an accident. Notice that
∩ is defined in terms of ∧ and ∪ is defined in terms of ∨; intersection is kind of
like “AND for sets” and union is “OR for sets”. (Also ∪ looks like a “U” for
“union”.)

33

17 More set operations and proofs (Friday 28
February)

17.1 Difference and complement

Definition 17.1. The difference of two sets A and B consists of the elements
in A but not B:

A−B = {x | x ∈ A ∧ x /∈ B}.

We can visualize it like this:

BA

Finally, we want to define the complement of a set as the set of things which
are not in the set. However, we have to be careful: this is a bit nonsensical on
its own. For example, if A = {1, 2, 3}, what elements are in its complement?
Surely the number 4 is, but what about my sister? Or Beethoven? Or the small
brown rock I picked up and threw into a pond last Tuesday? We have to restrict
ourselves to some universal set, a “universe of discourse” that contains all the
potential elements we are considering; in a given context, all the sets we work
with will be subsets of the universal set. (If we are working with typed sets,
where the elements are all taken from a particular type, then the type itself
serves as the universal set.)

Definition 17.2. Given a universal set U , the complement of a set A is all the
elements of U which are not in A:

A = U −A = {x | x ∈ U ∧ x /∈ A}.

We can visualize it as follows:

AU

Remark. Set union, intersection, and complement follow laws which are exactly
analogous to the logical equivalences for ∨, ∧, and ¬. For example, ∪ and ∩ are
associative, commutative, and idempotent, and have ∅ and the universal set U
as their identity and/or annihilator; ∩ distributes over ∪ and vice versa, that is,

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C);

34

there are also analogues of De Morgan’s laws, for example,

A ∪B = A ∩B.

These follow from the fact that each set operation is defined in terms of a
corresponding logical operation. Below is one example.

Theorem 17.3. For all sets A, B, and C,

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Proof. Let A, B, and C be arbitrary sets. We will show A ∩ (B ∪ C) = (A ∩
B) ∪ (A ∩C), by showing A ∩ (B ∪C) ⊆ (A ∩B) ∪ (A ∩C) and vice versa.

First, we will show A∩ (B ∪C) ⊆ (A∩B)∪ (A∩C). Let p ∈ A∩ (B ∪C);
we must show p ∈ (A ∩B) ∪ (A ∩ C).

Since p ∈ A ∩ (B ∪ C), it is an element of both, that is, p ∈ A and
p ∈ B ∪ C. Likewise, since p ∈ B ∪ C, then either p ∈ B or p ∈ C.

If p ∈ B, then p ∈ A ∩B because we know p ∈ A also.
Likewise, if p ∈ C, then p ∈ A ∩ C.
In either case, p ∈ (A ∩ B) ∪ (A ∩ C) since it must be in either

(A ∩B) or (A ∩ C).

Next, we must show (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).
(similar proof, omitted)

Another example one can try to prove is as follows:

Theorem 17.4. For all sets S and T , S ∪ T = S ∩ T .

35

18 Relations (Monday 3 March)

Definition 18.1. Let A and B be sets. A (binary) relation from A to B is a
subset of A×B.

We write a R b to denote (a, b) ∈ R (“a is related to b by R”).

Example. Let S be set of students at Hendrix, and C the set of courses offered
next year. Let R be the relation

{(s, c) | s is preregistered for c}.

We might visualize this relation something like this, with students on the left
and classes on the right:

D

C

B

A

5

4

3

2

1

We can see that several students (students 1, 3, and 4) are registered for two
classes. Class B has three students registered for it, and classes A and D have
two students each. Student 5 is either a senior or forgot to register for classes.
Class C is a sad class that no one registered for.

Most relations we care about are actually from a set to itself.

Definition 18.2. A relation on a set A is a relation from A to A (that is, a
subset of A×A).

Example. Here are some example relations on N:

• R1 = {(a, b) | a ≤ b}

• R2 = {(a, b) | a > b}

• R3 = {(a, b) | a = b}

• R4 = {(a, b) | a = b+ 1}

• R5 = {(a, b) | a+ b ≤ 10}

• R6 = {(a, b) | a divides b}

• R7 = {(a, b) | a, b end with the same digit in base 10}

And a few more example relations over other sets:

36

• R8 = {(P,Q) | P,Q propositions , P → Q}

• R9 = {(P,Q) | P,Q propositions , P ↔ Q}

• R10 = {(S, T) | S ⊆ T}

Many relations we care about have one or more nice properties.

Definition 18.3. A relation R on a set A is reflexive if

∀a ∈ A. a R a,

that is, every element is related to itself.

Of our example relations, the ≤ (R1), equality (R3), divisibility (R6), last
digit (R7), implication (R8), biconditional (R9) and subset (R10) relations are
reflexive, whereas the others are not. Note that there exist natural numbers
which are related to themselves under R5; for example, 2 R5 2 since 2+ 2 ≤ 10.
However, it is not the case that every natural number is related to itself under
R5 (for example, 7 + 7 ≰ 10), so R5 is not reflexive.

Definition 18.4. A relation R on a set A is symmetric if

∀a, b ∈ A. a R b→ b R a,

that is, whenever a and b are related, then b and a are also related.

The only symmetric relations among our examples are R3 (equality), R5,
R7, and R9.

Definition 18.5. A relation R on a set A is antisymmetric if

∀a, b ∈ A. (a R b) ∧ (b R a)→ a = b,

that is, the only way we can possibly have both a R b and b R a is when a and
b are actually the same. In other words, whenever a and b are different, at most
one of a R b or b R a can hold. Intuitively, this says that the relation R is as far
from being symmetric as possible: there’s not even a single pair of values that
exhibits symmetry.

R1 (≤) is clearly antisymmetric: if a ≤ b and b ≤ a then we definitely
have a = b. R10 (subset) is similarly antisymmetric. R6 (divisibility) is also
antisymmetric on the natural numbers: the only way to have both a | b and
b | a is if a = b. R3 (equality) is antisymmetric but for a boring reason. It may
require a bit more headscratching to see, but R2 and R4 are also antisymmetric.
For example, take R2 (>). For this to be antisymmetric, we must have

∀a, b ∈ N. (a > b) ∧ (b > a)→ a = b.

Is this true? In fact, it is, since it is impossible for (a > b) ∧ (b > a) to ever be
true, and an implication is always trivially true when its premise is false.

Note finally that R8 is not antisymmetric: if P → Q and Q→ P then they
are logically equivalent, but it does not mean they are exactly the same.

37

Definition 18.6. A relation R on a set A is transitive if

∀a, b, c ∈ A. (a R b) ∧ (b R c)→ (a R c).

The only relations among our examples which are not transitive are R4 and
R5. All the rest are transitive. We use the transitivity of these relations all
the time! For example, transitivity of = is what allows us to prove X = Y by
showing a chain of equalities X = X1 = X2 = · · · = Y .

38

19 Equivalence Relations (Wednesday 5 March)

A very important class of relations is equivalence relations, which in some suit-
able sense “act like equality”. We have used several of them this semester
already!

Definition 19.1. An equivalence relation on a set A is a reflexive, symmetric,
transitive relation.

I don’t know of a good way to explain why these particular properties are
the “right” ones to capture “equality-like” things. But hopefully as we see some
examples you will be convinced.

Example. Of course, equality itself is an equivalence relation. We can check
that it is indeed reflexive, symmetric, and transitive.

Example. Consider the relation L on the set of all English words, where two
words are related if and only if they have the same number of letters. This is
an equivalence relation:

• Reflexive? Check, each word has the same number of letters as itself.

• Symmetric? Check, if a has the same number of letters as b, then b has
the same number of letters as a.

• Transitive? Check, if a has the same number of letters as b, and b has the
same number of letters as c, then a has the same number of letters as c.

Example. What about the example from last time where two numbers were
related when they had the same last digit in base 10? This is an equivalence
relation too. Reflexivity, symmetry, and transitivity follow straightforwardly
from the definition. Later in the semester, we will explore a more general
version of this relation.

Example. If and only if, aka biconditional (↔), is an equivalence relation on
propositions.

Example. What about the divisibility relation? It is reflexive and transitive;
however, it is not symmetric, so it is not an equivalence relation.

Example. Consider the relation on integers given by

{(a, b) | 1 ≥ |a− b|}.

In other words, a and b are related when they are “very close”, that is, the
distance between them is at most 1. This is reflexive and symmetric, but not
transitive, so it is not an equivalence relation.

So, what kinds of things can we say about equivalence relations in general?
First, let’s define the important concept of an equivalence class.

Definition 19.2. Let ∼ be an equivalence relation on A, and let a ∈ A. The
equivalence class of a, denoted [a], is the set of all elements of A which are
related to a, that is,

[a] = {b ∈ A | a ∼ b}.

39

XXX picture of an equivalence class sitting inside A.

Example. Under the equivalence relation L (words are related if they have the
same length), the equivalence class of “dog” is the set of all three-letter English
words:

[dog] = {dog, cow,hat, eat, . . . }.

This is a finite (but large) set.

Example. Under the equivalence relation ≡4, the equivalence class of 1 is

[1] = {. . . ,−7,−3, 1, 5, 9, . . . }

This is an infinite set.

Suppose we have two elements a, b ∈ A. What can we say about the potential
relationship between their equivalence classes, [a] and [b]? It turns out there are
only two possibilities: either they are exactly the same, or they do not overlap
at all.

Theorem 19.3. Let ∼ be an equivalence relation on a set A. For any a, b ∈ A,
the following three propositions are logically equivalent:

1. a ∼ b

2. [a] = [b]

3. [a] ∩ [b] ̸= ∅

Proof. We will prove the chain of implications 1 → 2 → 3 → 1, which (by
transitivity of implication!) is enough to show they are all logically equivalent.

• 1 → 2. Suppose a ∼ b. We wish to show that [a] = [b], which we can do
by showing that both [a] ⊆ [b] and [b] ⊆ [a]. XXX draw a picture

Let’s show that [a] ⊆ [b]. Let x ∈ [a] be an arbitrary element; we will
show that x ∈ [b] also. Since x ∈ [a], by definition a ∼ x. We assumed
that a ∼ b; by symmetry this means b ∼ a as well. Then, by transitivity,
b ∼ x; so, by definition, x ∈ [b].

We omit the argument that [b] ⊆ [a], since it is exactly parallel.

• 2 → 3. If [a] = [b], then [a] ∩ [b] = [a] ∩ [a] = [a] (by idempotence of ∩).
This cannot be the empty set: since a ∼ a by reflexivity, we always have
a ∈ [a], so an equivalence class [a] is never empty.

• 3→ 1. Suppose [a]∩ [b] ̸= ∅, which means it has at least one element, call
it x ∈ [a] ∩ [b]. XXX draw a picture This means x ∈ [a] and x ∈ [b], so by
definition of equivalence classes we have a ∼ x and b ∼ x. By symmetry
and transitivity, we conclude that a ∼ b.

40

This means that the equivalence classes form a partition of A. XXX draw a
picture.

Definition 19.4. A partition of a set A is a collection of subsets Ai such that

•
⋃
Ai = A

• Ai ∩Aj = ∅ if i ̸= j

• Ai ̸= ∅

We can check these for the equivalence classes of an equivalence relation:

• The union of all the equivalence classes is the set A, since each element at
least shows up in its own equivalence class.

• Two different equivalence classes never intersect.

41

20 Functions (Friday 7 March)

What is the definition of a function?

20.1 Functions

Definition 20.1. Let A and B be sets. (Note: some books say nonempty sets,
but there’s no particular reason to make this restriction!) A function f from A
to B, written f : A → B, is a relation from A to B such that every a ∈ A is
related to exactly one b ∈ B.

A is called the domain and B is the codomain. We write f(a) = b to denote
the unique element b ∈ B that is assigned to a.

We can think of a function like this: XXX drawing
Here is an example that’s not a function, since there are multiple arrows

coming out of a single element of A. XXX drawing
And here’s another example of a non-function: there’s an element of A with

no arrow coming out of it.

Definition 20.2. The range of a function f : A→ B is the set

{b ∈ B | ∃a ∈ A. f(a) = b},

that is, the subset of B consisting of all those b’s which are actually the image
of (at least one) a ∈ A.

Example. Let Shp = {⋄,△,□}. Now define a function g : Shp→ N by

g(⋄) = 6

g(△) = 6

g(□) = 32.

This is a valid function since every element of Shp is assigned to exactly one
element of N. The domain of g is Shp, the codomain is N, and the range of g is
the set {6, 32}.
Example. Let h : N → N be defined by h(n) = 2n. The domain and codomain
of h are both N; the range is the set of all even natural numbers.

Example. Let ℓ : N → Shp be the function which sends all multiples of 3 to ⋄,
all numbers which are one more than a multiple of 3 to △, and all which are
two more than a multiple of 3 to □. That is,

ℓ(3n) = ⋄
ℓ(3n+ 1) = △
ℓ(3n+ 2) = □

This is a valid function since every natural number falls into exactly one of these
three cases.

42

21 1-1 and onto functions (Monday 10 March)

Start by showing how to define functions in Disco.
Question: what do we need to be true in order to be able to turn a function

around into a valid function that goes the opposite direction?
XXX picture
This is a valid function, but if we reverse the direction of all the arrows the

result would not be a valid function. There are two problems:

1. Different elements of the domain map to the same element of the codomain.
If we reverse the arrows that element will have multiple arrows coming out
of it, which is not allowed.

2. Some elements of the codomain are left out. If we turn the arrows around,
these will not be assigned to anything.

We can define some special types of functions that don’t have these problems.

Definition 21.1. A function f : A→ B is one-to-one (injective, an injection)
(your book says “injunction”!?) iff no two different elements of the domain map
to the same element of the codomain. That is,

∀a1 ∈ A. ∀a2 ∈ A. f(a1) = f(a2)→ a1 = a2,

or equivalently, taking the contrapositive,

∀a1, a2 ∈ A. a1 ̸= a2 → f(a1) ̸= f(a2).

If we want to prove that a function is injective, we typically use the first
formulation: for arbitrary a1, a2 ∈ A, we must prove f(a1) = f(a2)→ a1 = a2,
which we can do by supposing f(a1) = f(a2) and proving that a1 = a2.

To prove that a function is not injective, we need to prove the negation:

¬(∀a1, a2 ∈ A. a1 ̸= a2 → f(a1) ̸= f(a2))
≡ { De Morgan }
∃a1, a2 ∈ A. ¬(a1 ̸= a2 → f(a1) ̸= f(a2))

≡ { Implication }
∃a1, a2 ∈ A. ¬(a1 = a2 ∨ f(a1) ̸= f(a2))

≡ { De Morgan }
∃a1, a2 ∈ A. a1 ̸= a2 ∧ f(a1) = f(a2)

That is, we pick a1 and a2 which are not equal, and show that f(a1) = f(a2).

Example. Which of g, h, and ℓ are injective? For those that are not, could we
make another function with the same domain and codomain which is injective?

• g is not injective, since ⋄ ≠ □ but g(⋄) = g(□) = 6. We could easily
make a different function with the same domain and codomain which is
injective. For example, the function which is the same as g on △ and □
but sends ⋄ to 349.

43

• h is injective, which we can prove as follows.

Proof. Let m,n ∈ N be arbitrary natural numbers. Then we wish to prove
that h(m) = h(n) → m = n. So suppose h(m) = h(n), that is, 2m = 2n.
Then dividing both sides by 2 yields m = n, as desired.

• ℓ is very much not injective (for example, every single multiple of 3 maps
to ⋄). Moreover, there is no way to make an injective function with the
same domain and codomain.

Definition 21.2. A function f : A → B is onto (surjective, a surjection) if
“every element of B is covered”, that is,

∀b ∈ B. ∃a ∈ A. f(a) = b.

Put another way, f is onto if the range of f is the same as the codomain.

To show something is not onto, we just have to show the negation:

¬(∀b ∈ B. ∃a ∈ A. f(a) = b)
≡ { De Morgan }
∃b ∈ B. ∀a ∈ A. f(a) ̸= b.

That is, “there is some b ∈ B which is not the image of any a ∈ A under f .

Example. Which of g, h, and ℓ are onto? For those that are not, could we make
another function with the same domain and codomain which is onto?

• g is not onto. There are many, many elements of the domain (that is,
natural numbers) which are not the output of g for any input. There is no
function with the same domain and codomain we could make that would
be onto—the domain is too small to cover everything in the codomain!

• h is not onto either. The range of h is only the even natural numbers;
all the odd natural numbers are not covered. However, we could make an
onto function from N to N, for example, the identity function f(n) = n.

• ℓ is onto: every shape is the output of the function for some (actually,
many) inputs.

44

22 Bijections and Countable Sets (Wednesday
12 March)

Definition 22.1. A function f : A → B which is both one-to-one and onto
(injective and surjective) is called invertible (bijective, a bijection). We write
f−1 : B → A for the inverse of f , that is, the function defined by f−1(b) = a if
and only if f(a) = b.

Remark. Careful: there is an unfortunate notation overlap here. Usually x−1

means 1/x. But f−1 is not the same as 1/f ! It just denotes the inverse function
of f .

Normally, to prove a function is a bijection we can show it is both 1-1 and
onto. Alternatively, it turns out we can show it has an inverse. Careful though,
to prove g is the inverse of f we have to prove both g(f(a)) = a for all a in the
domain of f , and f(g(b)) = b for all b in the codomain. (Exercise: prove that if
there is a function g such that g(f(a)) = a for all a in the domain of f , then f
is injective; likewise, if there is g such that f(g(b)) = b for all b in the codomain,
then f is surjective.)

S’20: Didn’t make it to these examples.

Example. Let f : Z→ Z be defined by f(x) = x+ 1. Is f invertible?

• Check: is it one-to-one? Yes; for any x, y ∈ Z, if x+1 = y+1 then x = y.

• Onto? Yes, for any y ∈ Z, y − 1 ∈ Z and f(y − 1) = y.

Hence f is invertible, and in fact, f−1(x) = x− 1.

Example. Is f : N → N defined by f(n) = ⌊n/2⌋ invertible? No, it is not
one-to-one.

Example. Is f : Z→ Z defined by f(x) = 3x+ 2 invertible? No, it is not onto.

Example. What about f : Q→ Q defined by f(x) = 3x+ 2? This looks similar
to the previous example, but it is a different function! In fact this f is both
one-to-one and onto; f−1(s) = s−2

3 .

You are in a large room with thousands of people. Each person is wearing either
a red shirt or a blue shirt. You want to know whether there are more people
wearing red shirts, more with blue shirts, or an equal number. You have only
five minutes and a microphone. What should you do?

Draw some diagrams of injective, surjective, and bijective functions.

Example. Previously we considered the function f : N → N, f(n) = 2n; it is
not onto. However, if we define 2N as the set of all even natural numbers, then
f : N→ 2N defined in the same way is indeed a bijection. This is a bit strange
though, because 2N ⊆ N, yet there can be a bijection between them, i.e. their
elements can be matched up.

45

Infinity really messes with our intuition. With finite sets, if A ⊆ B and they
are not equal, then |A| < |B| and their elements can’t be matched up. But
infinite sets don’t work that way. In fact, we have been using the notation |A|
for the cardinality of sets, but we don’t even know what that should mean for
infinite sets.

However, matching things up is even more fundamental than counting. It’s
probably how people started counting in the first place. Let’s see if this can
guide us to some ideas about the cardinality of infinite sets.

22.1 Countable sets

Definition 22.2. Let A, B be sets. If there exists a bijection f : A→ B then
we say A and B have the same cardinality, and write |A| = |B|.

If there is an injection f : A→ B then we say |A| ≤ |B|.

Note that this definition makes sense for finite sets and the intuition we
already have for what the cardinality of a finite set is. If there is a bijection
between two finite sets, then they definitely have the same (natural number)
size; if there is an injection from A to B, then B definitely has to be at least as
big as A.

So now let’s think about infinite sets.

Definition 22.3. A set A is countable if it has the same cardinality as a subset
of N. Note that N is a subset of itself: in particular, we say A is countably
infinite if |A| = |N|.

Every finite set is countable; the situation looks like this:

A : a0 a1 a2 a3 . . . an
↕ ↕ ↕ ↕ ↕ ↕

N : 0 1 2 3 . . . n

The definition says a set is countable if it has a bijection to any subset of N,
but we often use a subset like {0, 1, 2, . . . }.

For infinite countable sets, the situation looks the same, but there is no
endpoint:

A : a0 a1 a2 a3 . . .
↕ ↕ ↕ ↕ ↕

N : 0 1 2 3 . . .

We can think of this scenario in several equivalent ways:

• A is countable if it has a bijection to (a subset of) N. (definition)

• A is countable if its elements can be put in a list. This is the same because
we can always number the elements of a list 0, 1, 2,

• A is countable if we can write (or imagine) a program that prints the
elements of A one after another, in such a way that any given element of
A will eventually be printed after some finite amount of time (if we are
willing to wait long enough).

46

Example. The set of shapes {△,□, ⋄} is countable since we can make a bijection
to the set {0, 1, 2}:

△ □ ⋄
↕ ↕ ↕
0 1 2

More generally, any finite set is countable.

Example. The set 2N of all even natural numbers is countably infinite, since
f(n) = 2n is a bijection between N and 2N:

N : 0 1 2 3 . . .
↕ ↕ ↕ ↕

2N : 0 2 4 6 . . .

Example. Is the set of integers Z countable? At first glance it might seem like
it’s not, since it is infinite in two directions and N is only infinite in one direction.
And indeed, if we try to list all the elements of Z in a naive way, it fails: “First
list 0, then all the positive integers, then all the negative integers” is not a valid
list, since it would take infinitely long to list all the positive integers and we
would never get around to any of the negative integers.

But Z is countable, which we can show by reordering the elements in a clever
way, for example:

N : 0 1 2 3 4 5 6 . . .
↕ ↕ ↕ ↕ ↕ ↕ ↕

Z : 0 1 −1 2 −2 3 −3 . . .

This will eventually get to any integer we want after some finite amount of
time, whether positive or negative. We could figure out an explicit formula for
a bijection following this pattern, something like

f(n) =

{
−(n/2) n is even

(n+ 1)/2 n is odd

but we don’t necessarily need to; just demonstrating the pattern and arguing
why it will reach every integer is enough.

Example. Is N× N countable?
The elements of N×N are ordered pairs of two natural numbers, for example,

(3, 5). We can imagine them in a 2D grid:

... . .
.

(2, 0) (2, 1) (2, 2)
(1, 0) (1, 1) (1, 2)
(0, 0) (0, 1) (0, 2) . . .

At first it seems like the answer should be no. Each row of the 2D grid is
the same size as a complete copy of N; and we have infinitely many rows! How
could infinitely many copies of N be the same size as N?

47

And indeed, if we try listing the elements by row or column it definitely
doesn’t work. “First, list all the elements in row 0; then, list all the elements
in row 1; then row 2; and so on”—we will spend an infinitely long time just
listing elements of the form (0, n) and never even get around to pairs starting
with anything other than 0.

However, surprisingly, N×N is countable! Again, we can show this by listing
the pairs in a clever order that guarantees we will reach any specific pair in a
finite amount of time. The key idea is to list them by diagonals, that is, we list
the pairs (x, y) in order of the sum x+ y. First we list all the pairs with sum 0
(there’s only one, (0, 0)), then all the pairs with sum 1 (there are two of them,
(1, 0) and (0, 1)), then the pairs with sum 2, and so on. We end up with a list
that looks like this2:

N : 0 1 2 3 4 5 6 . . .
↕ ↕ ↕ ↕ ↕ ↕ ↕

N× N : (0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (3, 0) . . .

2Challenge: work out a formula for this bijection!

48

23 Countable and uncountable sets (Friday 14
March)

Once we have this idea, we can see that N × N × N must also be countable:
we can either explicitly list them by “diagonal slices” through the corner of the
infinite 3D cube; or we can just observe that we can do the N×N→ N bijection
twice to get a bijection (N×N)×N→ N×N→ N.3 Likewise, N4, N5, and any
finite Cartesian product of N with itself is also countable.

23.1 Is everything countable?

At this point you might wonder if every infinite set is countable. (But if so,
why is there a name for it?) In fact, there are some infinite sets that are not
countable!

23.2 The rationals are countable!

Let’s think about Q, the set of rational numbers. There are a lot, right? In
between any two integers there are infinitely many rational numbers. If you pick
two rational numbers that are really close together, there are infinitely many
rational numbers between those. No matter how far you zoom in there will
always be infinitely many rational numbers in the part of the number line you
are looking at! It is like infinitely fuzzy fuzz. So surely there are more rational
numbers than there are natural numbers, right?

Wrong! A rational number is just a pair of integers: a numerator and a
denominator. The function f : Q→ Z×Z that sends the rational number p/q to
the pair (p, q) is injective: if two rational numbers are not the same, p/q ̸= r/s,
then certainly the pairs (p, q) and (r, s) are not the same. So |Q| ≤ |Z×Z| = |N|!
If you weren’t weirded out by the fact that |N×N| = |N| before, you should be
now.

23.3 Non-countable sets

Are there any non-countable sets? How would we prove it if there were? Let’s
use our superpower:

¬Countable(A)

≡ ¬∃f : N→ A. Bijective(f)

≡ ¬∃f : N→ A. Injective(f) ∧ Surjective(f)

≡ ∀f : N→ A. ¬Injective(f) ∨ ¬Surjective(f)

So to prove that a set A is not countable, we must show that for every possible
function f from N to A, either f is not injective or it is not surjective. Note

3Challenge: work out the details of showing that this is valid. For example, we need to
know that if f : A → B is a bijection then we can use it to make a bijection between A × C
and B × C.

49

that a function from N to A is the same as an infinite list of values from the set
A. So we have to show that every possible infinite list of A either has repeated
elements, or leaves some elements out.

Consider the set [0, 1) of real numbers between 0 (inclusive) and 1 (exclusive).
Each such real number can be written as an infinite decimal,

0.d1d2d3d4 . . .

(note this even works for things with finite decimal expansions because we can
stick an infinite number of zeros on the end, like 1/2 = 0.500000000 . . .).4

Now, suppose we have a list of real numbers. It might start something like
this:

r1 = 0.d11d12d13d14 . . .

r2 = 0.d21d22d23d24 . . .

r3 = 0.d31d32d33d34 . . .

r4 = 0.d41d42d43d44 . . .

...

Remember that this list represents a function N → [0, 1). We claim that no
matter what this function is, it is not surjective, that is, there is at least one
real number in the interval [0, 1) that gets left out. We’re going to build a real
number

0.c1c2c3c4 . . .

by specifying it digit-by-digit.

• For the first digit, c1, pick any digit which is not equal to d11, the first
digit of the first number in the list.

• For the second digit, c2, pick any digit which is not equal to d22, the
second digit of the second number in the list.

• . . . and so on: for digit ci pick any digit which is not equal to dii, the ith
digit of the ith number in the list.

We now claim that the resulting number c = 0.c1c2c3c4 . . . is nowhere on the
list! It cannot be equal to r1, because c and r1 have different first digits. It
cannot be equal to r2, because they differ in their second digits. It cannot be
equal to any ri, because the ith digit of c was chosen in such a way that it is
different than the corresponding digit of ri.

We assumed nothing about our list of real numbers other than the fact that
it was a list; we have therefore shown that any list of real numbers in the interval
[0, 1) must necessarily be incomplete. Therefore, it is not possible to create a

4There is also a finicky issue with some real numbers having multiple representations as
infinite decimals, for example, 0.5000000000 · · · = 0.4999999999 . . . , but we’re not going to
worry about this for now. It’s annoying but not too hard to deal with this.

50

bijection between N and [0, 1), so the set of real numbers in the interval [0, 1) is
uncountable. (Of course, this means the set of real numbers R is uncountable
too.)

S’20: Drew a hierarchy of set cardinalities on the board and talked for a little
while about the implications of having non-countable sets and the fact that
P(A) is always bigger than A, and so on

51

24 Sequences (2.4) (Monday 17 March)

24.1 Sequences

Definition 24.1. A sequence is a function from N (or a subset of N) to a set
A. We use subscript notation like an, bn to denote the image of n, i.e. the nth
term of the sequence.

In other words, a sequence can also be thought of as a list where each element
has a number:

a0, a1, a2, a3, . . .

The subset of N serves as a set of indices; we often use N itself, or sometimes
Z+ = {1, 2, 3, . . . }, or a finite set like {0, 1, 2, . . . , n− 1}.
Remark. The book uses the notation {an} to refer to a sequence but it’s terrible
notation (because it looks like a set, but isn’t) and I won’t use it, even though
it is (somewhat) standard.

Example. Consider the sequence of rational numbers with an = 1/n, starting
with a1. The sequence starts

1,
1

2
,
1

3
,
1

4
, . . .

Example. The sequence defined by an = 5 begins

5, 5, 5, 5, 5, . . .

Example. The string “hello” can be thought of as a finite sequence of letters,
with

a0 = h, a1 = e, a2 = l, a3 = l, a4 = o.

Example. Consider the sequence

2, 5, 8, 11, 14, 17, . . .

Evidently each term in the sequence is three more than the previous term. This
sequence can also be described by an = 2 + 3n, starting at a0.

This type of sequence, in which there is a common difference between con-
secutive terms, is known as an arithmetic sequence.

Example. Consider the sequence

2, 6, 18, 54, 162, . . .

In this case, an = 2 · 3n for n ≥ 0. This type of sequence, with a common ratio
between consecutive terms, is known as a geometric sequence.

When we define a sequence via a formula for an in terms of n like this, we
say it is in closed form. Another way to define a sequence is via a recurrence
relation, or just a recurrence for short.

52

Definition 24.2. A recurrence relation for a sequence is a rule expressing an
using one or more previous terms of the sequence.

Example. What sequences are described by the recurrence

an = 3an−1?

The solutions to this recurrence are all geometric sequences with a common
ratio of 3. For example, one such sequence would be

1, 3, 9, 27, 81, . . .

Of course, another is the example 2, 6, 18, . . . that we saw previously.
If we specify a value for a0, say, a0 = 2, then the sequence is determined

completely: from a0 we can compute a value for a1; then from a1 we can compute
a2, and so on.

Example. Let a0, a1, . . . be a sequence satisfying the recurrence

an = 2an−1 + 1

with a0 = 0.
We have a1 = 2a0 + 1 = 1; then a2 = 2 · 1 + 1 = 3; then a3 = 7; and so on.

The sequence starts
0, 1, 3, 7, 15, 31, 63, . . .

Looking at this we notice that every term of the sequence seems to be one
less than a power of two, so we conjecture the closed form

an = 2n − 1.

First, let’s check that this works for a0, which it does: 20 − 1 = 1 − 1 = 0.
Next, let’s see if an satisfies the recurrence when defined in this way. We can
do this by substituting our conjectured closed form for an into the recurrence
and seeing if the two sides are equal:

2an−1 + 1 = 2(2n−1 − 1) + 1 = 2n − 2 + 1 = 2n − 1 = an.

Yay! This is in fact a valid proof that this closed form and recurrence define
the same sequence.

Example. an = n · an−1, a0 = 1. These are the factorial numbers, an = n!.

Example. Consider the recurrence

an = 2an−1 − an−2.

In general there are many sequences that satisfy this recurrence. For example,
let’s pick a0 = 3 and a1 = 13 and see what we get:

3, 13, 23, 33, 43, 53, . . .

We could conjecture that an = 10n + 3 is a closed form for this sequence, and
prove it by substituting it for an in the recurrence to see if it checks out.

53

24.2 Some example sequences

Can you describe the following sequences either with a closed form or a recur-
rence?

• 1, 3, 5, 7, 9, 11, 13, 15, . . .

These are of course the odd numbers. The simplest way to describe them
is to notice that each term is two more than the previous term, leading to
the recurrence

a0 = 1

an = an−1 + 2

Alternatively, we can describe them by the closed form an = 2n+1 (if we
start at a0) or an = 2n− 1 (if we start at a1).

• 0, 1, 3, 6, 10, 15, 21, . . .

These are the triangular numbers, because an is the number of dots in an
equilateral triangle with n dots on a side:

Notice how the gap between successive terms increases by 1 every time.
This satisfies the recurrence

△0 = 0

△n = △n−1 + n

There is also a closed form for △n which we’ll derive shortly.

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

These are the famous Fibonacci numbers, described by the recurrence

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2.

There is a closed form for Fn although we probably won’t derive it in this
class. In fact,

Fn =
1√
5
(φn − φ̂n)

where φ and φ̂ are respectively the positive and negative solutions of
x2 − x− 1 = 0, that is, (1±

√
5)/2. If you’re interested in learning where

this comes from, just ask!

S’23: Left out summation this year.

54

25 Summation and Σ-notation (Wednesday 19
March)

We introduce the notation
j∑

n=i

an

to denote the sum of the sequence

ai + ai+1 + ai+2 + · · ·+ aj .

That is, we add up each an with n taking on the values i, i + 1, and so on up
to j. n is the index variable, i is the lower limit and j is the upper limit. Σ is a
capital Greek letter Sigma, and stands for Σum.

Incidentally, I actually prefer the notation∑
i≤n≤j

an

because we get to reuse familiar notation and we can apply a lot of our intu-
ition and knowledge about dealing with inequalities to successfully manipulating
sums.

Example. Write 1 + 3 + 5 + 7 + · · ·+ 99 using Σ-notation.
If we call the first term a1, this is a sum of terms with closed form an = 2n−1,

and the last term is a50, so we have

50∑
n=1

(2n− 1).

Now, how could we actually evaluate this sum? Let’s develop some general
techniques and then come back to attack it later.

25.0.1 Sum of a constant

First, notice that

b∑
n=a

1 = 1 + 1 + 1 + · · ·+ 1 = b− a+ 1.

Why b− a+ 1 and not b− a, you ask? This is the “fence post problem”: if we
number the posts of a fence, how many fence posts are there between post a and
post b? If there is one post every meter, then the distance from post a to post
b is certainly b− a meters. But if we try to match up a post to each meter-long
section of fence, we find that we have one post left over. For example, if we
match up each meter-long section of fence with the post on its left, then the
post at the very end is not matched with any section. Hence, the number of
posts from a to b is one more than the number of sections.

55

25.0.2 Factoring out constants∑
n

kan = k
∑
n

an

This works as long as k is a constant with respect to n, that is, k does not contain
or depend on n at all. k does not have to be a number; it could be anything
at all that does not depend on n. This rule is telling us that if we are adding
up a bunch of terms, and every term is k times something, we can factor out
all the k’s and simply multiply once by k at the end. If we write out what the
Σ-notation means, this should become clear:

ka0 + ka1 + ka2 + · · · = k(a0 + a1 + a2 + . . .)

Notice, the fact that k does not depend on n is what guarantees that all the
k’s will all be the same, unlike the an’s which may all be different.

25.0.3 Summing a sum∑
n

(an + bn) =

(∑
n

an

)
+

(∑
n

bn

)
This follows because addition is commutative and associative. Written out, the
above law is really just saying:

(a0+ b0)+ (a1+ b1)+ (a2+ b2)+ · · · = (a0+ a1+ a2+ . . .)+ (b0+ b1+ b2+ . . .)

i.e. we are just putting the an’s and bn’s in a different order.

25.0.4 Triangular numbers

What is the nth triangular number,

△n =

n∑
j=1

j?

We can use a cute trick to compute it. First, write out the sum twice, but
reversed the second time. Then add the two equations.

△n = 1 + 2 + . . . + (n− 1) + n
+△n = n + (n− 1) + . . . + 2 + 1
2△n = (n+ 1) + (n+ 1) + . . . + (n+ 1) + (n+ 1)

We get n copies of n+ 1, so 2△n = n(n+ 1), and hence

△n =
n(n+ 1)

2
.

56

25.0.5 Sum of an arithmetic sequence

Example. Compute
50∑

n=1

(2n− 1).

We can now compute as follows:

50∑
n=1

(2n− 1)

= { sum of a sum }(
50∑

n=1

2n

)
−

(
50∑

n=1

1

)
= { factor out constant 2, sum of a constant }

2

(
50∑

n=1

n

)
− (50− 1 + 1)

= { triangular number formula }

2
50(50 + 1)

2
− 50

= { arithmetic }
50(50 + 1)− 50 = 502 + 50− 50 = 502 = 2500.

Example. We could now, in fact, derive a formula for the sum of any arithmetic
sequence:

b∑
n=a

(cn+ d) = . . .

but I’ll let you have the pleasure of working it out!

25.0.6 Sum of a geometric sequence

What about a geometric sequence such as an = rn, that is,

1 + r + r2 + r3 + · · ·+ rn?

We can use a similar kind of trick as the one we used to find a closed form for
triangular numbers. This time, we multiply by r and then subtract:

S = 1 + r + r2 + . . . + rn

rS = r + r2 + . . . + rn + rn+1

S − rS = 1 − rn+1

Solving for S yields

S =
1− rn+1

1− r
=

rn+1 − 1

r − 1
.

Example. 1 + 2 + 22 + 23 + · · ·+ 2n = 2n+1 − 1.

57

26 Solving Recurrences (Friday 21 March)

In many situations, it is easy to write down a recurrence relation, but what we
really want is a closed form. How can we figure out a closed form for a given
recurrence? There are many techniques, but the simplest is to “unfold” the
recurrence and look for a pattern.

Example. Let’s start by looking at a recurrence for the odd numbers:

g0 = 1

gn = gn−1 + 2 (n ≥ 1)

We can start with gn and keep unfolding it via the recurrence. For example,
after unfolding to gn−1 + 2, the recurrence tells us that gn−1 = gn−2 + 2, so we
can unfold again, and so on:

gn = gn−1 + 2

= (gn−2 + 2) + 2

= ((gn−3 + 2) + 2) + 2

= . . .

We see a pattern: gn−k is going to be followed by adding k copies of 2. So
in general, we have

gn = gn−k + 2k.

Since we know the value of g0, substituting k = n is helpful:

gn = gn−n + 2n = g0 + 2n = 1 + 2n.

So we have derived the closed form gn = 2n+1 which is what we knew it should
be.

Example. As another example, consider the recurrence

p0 = 0

pn = 2pn−1 + 1

We can unfold this recurrence as follows:

pn = 2pn−1 + 1

= 2(2pn−2 + 1) + 1

= 22pn−2 + 2 + 1

= 22(2pn−3 + 1) + 2 + 1

= 23pn−3 + 22 + 2 + 1

= . . .

= 2kpn−k + 2k−1 + 2k−2 + · · ·+ 2 + 1

= 2kpn−k + 2k − 1

58

The last step follows because 2k−1 + 2k−2 + · · · + 1 is the sum of a geometric
sequence with ratio r = 2. When k = n, this becomes

pn = 2npn−n + 2n − 1 = 2n − 1

since p0 = 0.

Example. As another example, consider

q0 = 1

qn = 3qn−1 + 2

Unfolding:

qn = 3qn−1 + 2

= 3(3qn−2 + 2) + 2

= 32qn−2 + 3 · 2 + 2

= 32(3qn−3 + 2) + 3 · 2 + 2

= 33qn−3 + 32 · 2 + 3 · 2 + 2

= . . . = 3kqn−k + 3k−1 · 2 + 3k−2 · 2 + · · ·+ 2

= 3kqn−k + 2(3k−1 + 3k−2 + · · ·+ 1)

= 3kqn−k + 2
3k − 1

2

= 3kqn−k + 3k − 1

When k = n, we obtain

qn = 3nq0 + 3k − 1 = 2 · 3n − 1.

We can check that this is correct by (1) computing a few terms of the sequence
and checking that our closed form generates the same terms, and/or (2) substi-
tuting our closed form into the recurrence to make sure it checks out.

27 No class: Spring break (Monday 24 March)

28 No class: Spring break (Wednesday 26 March)

29 No class: Spring break (Friday 28 March)

59

30 Induction (Monday 31 March)

When discussing propositional logic, we talked about proof strategies for dif-
ferent types of statements. When proving a forall statement of the form ∀x ∈
D. P (x), the proof strategy we discussed was to let d be an arbitrary element
of D and prove P (d). However, for certain domains D there is another way to
prove forall statements: induction. In particular, today we will discuss how to
prove something for all natural numbers.

Suppose we have a proposition P (n) and we want to prove that P (n) holds
for all n ∈ N. That is, we want to prove all the propositions in the list:

P (0) P (1) P (2) P (3) P (4) P (5) . . .

We cannot literally prove each one separately, because there are infinitely many.
One way we can think about proving them is to arrange them in a chain, like
this:

P (0)→ P (1)→ P (2)→ P (3)→ P (4)→ P (5)→ . . .

The idea is to start by proving P (0) (the “base case”) and then “prove the
arrows” by proving that each proposition implies the next in the chain—that is,
for every k ≥ 0, P (k) always implies P (k+1) (this is the “inductive step”). We
can prove the inductive step by supposing k to be an arbitrary natural number,
supposing P (k) is true (this is called the “induction hypothesis”, abbreviated
IH), and proving that P (k + 1) must therefore be true as well.

Another way to think of this is as an infinite chain of dominos:

• Proving the base case corresponds to knocking over the first domino;

• The induction step corresponds to showing that each domino, if it falls
down, will knock over the next domino in the line.

In formal predicate logic notation, the principle of induction says

P (0) ∧ (∀k ∈ N. P (k)→ P (k + 1))→ (∀n ∈ N. P (n)).

Note that this involves a ∀ inside an ∧ inside a →! Students often find this
confusing. Rely on your skill in manipulating formal propositional logic!

30.1 Example: sum of first n natural numbers

The other day we explored a visual proof that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

for all n. Now let’s give a more formal algebraic proof.

Proof. Let P (n) be the proposition that 1 + 2+ 3+ · · ·+ n = n(n+1)
2 . We want

to prove ∀n :N. P (n). By the principle of induction, we will be able to conclude
this if we are able to prove

P (0) ∧ (∀k :N. P (k)→ P (k + 1)).

60

Since this is an ∧ we must prove each.

• First we will prove the base case P (0), that is, 1 + 2 + · · · + 0 = 0(0+1)
2 .

In fact both sides are equal to 0 since the left is an empty sum.

• Now we will prove the induction case ∀k :N. P (k)→ P (k + 1).

– So let k be an arbitrary natural number; we will prove P (k)→ P (k+
1).

– Suppose P (k), that is, 1+2+3+· · ·+k = k(k+1)
2 . This is our induction

hypothesis. We must prove P (k + 1), that is, 1 + 2 + · · ·+ (k + 1) =
(k+1)(k+2)

2 .

1 + 2 + 3 + · · ·+ k + (k + 1)
= { IH }

k(k+1)
2 + (k + 1)

= { algebra }
k2+k+2k+2

2
= { algebra }

(k+1)(k+2)
2

30.2 Example: growth of 2n and n!

As a second example, consider the predicate P (n) defined as 2n < n!. If we try
to prove this for all n ∈ N, we quickly discover that it isn’t: P (0) is not true
(20 = 1 which is not less than 0! = 1); neither is P (1) (21 is not less than 1!),
nor P (2), nor P (3). However, all is not lost: P (4) is true (24 = 16 < 4! = 24),
and we suspect that P (n) is true from then on, that is, for all n ≥ 4. We can
still use induction to prove this; we just need to use a different base case.

Theorem 30.1. 2n < n! for all n ≥ 4.

Proof. By induction on n.

• In the base case, 24 < 4! is true.

• Now let k be an arbitrary natural number such that k ≥ 4. Suppose P (k)
is true, that is,

2k < k!. (IH)

We wish to show that 2k+1 < (k + 1)! as well.

2k+1

= { algebra }
2 · 2k

< { IH }

61

2 · k!
< { 2 < k + 1 since k ≥ 4 }

(k + 1) · k!
= { definition of factorial }

(k + 1)!

So, by induction, 2n < n! for all n ≥ 4.

62

31 Strong induction (Wednesday 2 April)

Sometimes it’s difficult—or even impossible—to directly prove P (k + 1) from
the assumption of P (k). For example, what if we can’t prove P (4) from P (3),
but we can prove it from P (2)? Is that OK? What if we can only prove P (3)
by assuming both P (0) and P (1)? Is that OK?

In general, yes, these are OK: as long as we can prove each proposition from
assuming only previous propositions, we will eventually be able to prove any of
them. This leads to the principle of strong induction. Instead of assuming only
P (k) as our induction hypothesis and then proving P (k + 1), like this:

P (k)→ P (k + 1)

we will instaed assume all the previous propositions and use them to prove
P (k + 1), like this:(

P (0) ∧ P (1) ∧ P (2) ∧ · · · ∧ P (k)
)
→ P (k + 1).

Written out, a first take on the principle of strong induction thus looks like this:

P (0) ∧ (∀k ∈ N.
(
P (0) ∧ P (1) ∧ · · · ∧ P (k)

)
→ P (k + 1))→ (∀n ∈ N. P (n)).

Alternatively, we could write it without the . . . like this:

P (0) ∧ (∀k ∈ N. [∀j ≤ k. P (j)]→ P (k + 1))→ (∀n ∈ N.P (n)).

We can also make this a bit more general, in two ways:

1. Just like in the example proving 2n < n!, the base case need not actually
be 0.

2. Sometimes the inductive step might need a certain number of previous
cases to “get off the ground”. In this case we need more base cases to
start.

For a fully general version of strong induction written out using predicate logic,
see the video lecture or your textbook. But honestly, it’s much more important
to understand the ideas behind the above two points. Some examples should
help.

Note that despite their names, “strong” induction is not really any “stronger”
than normal (“weak”) induction. In fact, they are logically equivalent, in the
sense that either one can be used to prove the other. This is unsurprising in
the case of strong induction implying weak induction: if you get to use strong
induction, when you have your IH that says P (0) ∧ · · · ∧ P (k), you may always
choose to ignore everything except P (k). What is more surprising is the fact
that weak induction implies strong induction. If you want to know more about
how this works, see your textbook or ask me.

In the end, then, we can just say “induction” and in some sense it does not
really matter whether we are using weak or strong induction. However, it is
often helpful to signal to our readers what kind of argument they can expect to
see.

63

31.1 Example: growth of Fibonacci numbers

Recall the definition of the Fibonacci numbers:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 when n ≥ 2

The first few Fibonacci numbers are thus

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

The Fibonacci numbers grow very quickly (for example, the 100th Fibonacci
number is already 354224848179261915075). How quickly do they grow? Here’s
one result that starts to answer this question:

Theorem 31.1. Fn ≤ 2n−1 for all n ∈ N.

Again, let’s try weak induction and see what goes wrong.

Proof attempt. • In the base case, F0 = 0 which is indeed less than or equal
to 20−1 = 1/2.

• For the induction step, let k ≥ 0 be an arbitrary natural number, and
suppose Fk ≤ 2k−1; we must show that Fk+1 ≤ 2k. To this end,

Fk+1

= { definition of Fibonacci numbers∗ }
Fk + Fk−1

≤ { IH }
2k−1 + Fk−1

Here is where we get stuck: the IH let us conclude something about Fk

but it says nothing about Fk−1. And actually, it is worse than that: one of
the steps above was actually incorrect! The step marked with an asterisk
was not allowed: we wrote Fk+1 as the sum of two previous Fibonacci
numbers, but if k = 0 there is no such thing! There is only one Fibonacci
number before F1. Since the induction step needs two previous cases, we
need to use strong induction, and we also need to start with two base cases
so the first induction step has something to get started with.

Here’s the real proof:

Proof. By strong induction on n.

• The base case for n = 0 is as before, but we need a second base case now:
F1 = 1 ≤ 21−1 = 1.

64

• Now let k ≥ 1 (not 0!) be an arbitrary positive integer and suppose as
our induction hypothesis that Fj ≤ 2j−1 for every j from 0 up to k. We
must show that Fk+1 ≤ 2k, which we do as follows:

Fk+1

= { definition of Fibonacci numbers (valid since k ≥ 1) }
Fk + Fk−1

≤ { IH, twice }
2k−1 + 2k−2

< { 2k−2 < 2k−1 }
2k−1 + 2k−1

= { algebra }
2k

Challenge: can you prove that (3/2)n < Fn for suitable values of n? To-
gether, these results give us a decent idea of how fast Fn grows.

65

32 More induction examples (Friday 4 April)

• Quiz today!

32.1 Example: recurrence

Let a0 = 0, an = 2an−1 + 1. Prove that an = 2n − 1 for all n ≥ 0.

Proof. Let P (n) be the proposition “an = 2n − 1”. We will show ∀n :N. P (n)
by induction.

• P (0) says “a0 = 20 − 1”, which is true since both sides are equal to 0.

• In the induction step, we must show ∀k :N. P (k)→ P (k+1). So let k be an
arbitrary natural number, and suppose P (k) is true, that is, ak = 2k − 1.
We must show P (k + 1), that is, ak+1 = 2k+1 − 1.

ak+1

= { definition }
2ak + 1

= { assumption (induction hypothesis) }
2(2k − 1) + 1

= { algebra }
2k+1 − 2 + 1

= { algebra }
2k+1 − 1

32.2 Example: sum of odds

If we write down some sums of the first few odd numbers, we notice a pattern:

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

It seems as though we always get a square number as the sum. In particular,
we get the square of the number of odds we added up. We conjecture that the
sum of the first n odd numbers is equal to n2, that is:

Theorem 32.1. For all n ≥ 0,

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

66

This is a claim of the form ∀n ∈ N. P (n), where P (n) represents the state-
ment 1 + 3 + 5 + · · ·+ (2n− 1) = n2, so we can try proving it by induction.

Proof. By induction on n.

• In the base case, when n = 0, we have a sum of zero things on the left-hand
side, and 02 on the right-hand side, which are both equal to 0.

• For the inductive step, let k ≥ 0 be arbitrary, and suppose P (k) holds,
that is,

1 + 3 + 5 + · · ·+ (2k − 1) = k2. (IH)

We must show P (k + 1), that is,

1 + 3 + 5 + · · ·+ (2(k + 1)− 1) = (k + 1)2.

We reason as follows:

1 + 3 + · · ·+ (2(k + 1)− 1)
= { including one more term of the . . . }

1 + 3 + · · ·+ (2k − 1) + (2(k + 1)− 1)
= { IH }

k2 + (2(k + 1)− 1)
= { algebra }

k2 + 2k + 1
= { algebra }

(k + 1)2

Hence 1+ 3+ 5+ · · ·+ (2(k+1)− 1) = (k+1)2 which is what we wanted
to show.

Therefore, by induction, the sum of the first n odd numbers is n2 for all n ∈
N.

Alternatively, we can use summation algebra:

∑
1≤k≤n

(2k − 1) = 2

 ∑
1≤k≤n

k

−
 ∑

1≤k≤n

1

= 2

n(n+ 1)

2
− n

= n2 + n− n

= n2

67

33 Divisibility (Monday 7 April)

We’re going to embark on a study of basic number theory, which can be thought
of as the study of the sets N and Z. These sets may seem straightforward—and
they are, if all you care about is addition. But as soon as we throw multiplica-
tion into the mix, things get very interesting indeed. Number theory—and in
particular the interaction between addition and multiplication on the integers—
is the basis for, e.g. all of modern cryptography, as well as one of the most
famous open problems in mathematics, the Riemann hypothesis. Questions
about prime numbers, factoring, and solving equations over the integers have
fascinated humans for thousands of years.

33.1 Divisibility

With that in mind, recall the notion of one number being a “multiple” of an-
other, or (equivalently) one number “evenly dividing” another number. We’ll
begin by making this notion precise.

Definition 33.1. If a, b ∈ Z, we say a divides b iff there exists k ∈ Z such that
ka = b.

When a divides b, we also say a is a divisor or factor of b, and that b is a
multiple of a. We use the notation

a | b

to denote the fact that a divides b, and write a ∤ b as an abbreviation for ¬(a | b).
We can illustrate the situation as follows:

raaa
b

a ∤ b:

aaa
b

a | b:

In the situation illustrated at the top, b can be covered exactly with three copies
of a, so a | b. On the other hand, in the bottom illustration, attempting to cover
b with copies of a leaves a bit left over; hence a ∤ b. Thinking about pictures like
this can help us build the right intuition. However, keep in mind that the formal
definition is a bit more general than these pictures, since the formal definition
allows a and b to be negative, or zero, which the pictures can’t really show.

Example.

• 3 | 6 (pick k = 2).

• 5 ∤ 16, since there is no k ∈ Z we can pick such that 5k = 16. (Of course
k = 16/5 works but that’s not an integer.)

• 5 | −15 (pick k = −3).

68

• 4 | 4 (pick k = 1).

• 8 ∤ 4. Note this illustrates the very important point that | is not symmetric—
in general a | b and b | a are not the same. (In fact, the only case in which
a | b and b | a is when a = ±b.)

• 0 ∤ 3 since there is no k ∈ Z for which 0k = 3.

• 3 | 0 since we can pick k = 0.

• 0 | 0 since we can pick, e.g. k = 671 to make 0k = 0 (of course, any k ∈ Z
will do).

Remark. Notice that there is no need to limit the definition of a | b to a ̸= 0
(as Rosen does). The definition does not actually mention division at all so
everything is perfectly well-defined even if a = 0.

Theorem 33.2. Let a, b, c ∈ Z. Then

(i) a | a (the divisibility relation is reflexive).

(ii) if a | b and b | c, then a | c (divisibility is transitive).

(iii) if a | b and a | c, then a | (b+ c).

(iv) if a | b, then a | bc.

Let’s prove (i). First, we’ll draw a picture:

aaaaaaa
b+ c

=

aaaa

c
+aaa

b

This isn’t quite a proof (because it doesn’t really show what happens for negative
numbers or zero), but it gives us a good intuition as to why this should be true.
If b and c can both be decomposed exactly into copies of a, then their sum will
also decompose into copies of a—specifically, the number of copies of a in b+ c
will be the sum of the number of copies of a in b and the number of copies in c.

Proof. Let a, b, c ∈ Z and suppose a | b and a | c. Then by definition there exist
j, k ∈ Z such that ja = b and ka = c. Then

b+ c = ja+ ka = (j + k)a.

Thus we have showed how we can write the sum b+ c as an integer times a, so
by definition a | (b+ c).

69

Remark. By definition we have

(a | b)↔ (∃k ∈ Z. k · a = b).

But consider that we can characterize ≤ similarly:

(a ≤ b)↔ (∃k ∈ N. k + a = b).

(There is a slight discrepancy because of the need to use N in the characterization
of ≤ rather than Z, but if we forget about negative numbers the discrepancy
goes away.) That is, ≤ is to addition as | is to multiplication. The two relations
actually share many important properties in common (e.g. both are reflexive
and transitive, and antisymmetric when restricted to N).

33.2 The Division Algorithm

Recall our picture from above, where a didn’t fit exactly into b but we had some
small amount left over which we labelled r. We can make this more precise.

Theorem 33.3 (Division Algorithm). Let a, d ∈ Z and d ∈ Z+. Then there
exist unique integers q and r such that 0 ≤ r < d and a = dq + r.

In this definition q is called the quotient and r the remainder. We write

q = a div d

r = amod d

The div operator is written / in Java and C/C++, and // in Python; the mod
operator is written % in many programming languages.

Example.

• What is the quotient and remainder when 101 is divided by 11?

According to the division algorithm, there exist q and r such that 101 =
11q+ r and 0 ≤ r < 11. We find that 101 = 11 · 9+ 2, so q = 9 and r = 2.
We could also express this as

101 div 11 = 9

101mod 11 = 2

• 55 divided by 11? q = 5, r = 0.

• What is 7mod11? This situation is sometimes confusing for students just
learning about the % operator in a programming language, but applying
the definition, we seek (q and) r such that 0 ≤ r < 11 and 11 = 7q + r.
The only values that fit the bill are q = 0 and r = 7. In other words, if
we try to divide 7 by 11, we find that 0 copies of 11 fit into 7, and we are
left with the same 7 we started with.

70

• What is the result of dividing −24 by 11? If we think purely in terms of
“how many copies of 11 will fit” we might think the quotient is−2, but that
does not make the remainder come out right! In fact, −24 = 11 · (−3)+9,
so the quotient is −3 with a remainder of 9.

Why is the Division Algorithm true? We won’t give a formal proof, but note
that a = d · 0 + a; in other words, we can start with q = 0 and r = a, but
probably a is too big: we need 0 ≤ r < d. Whenever r ≥ d we can add one to q
which decreases r by d. This must eventually land us in the range 0 ≤ r < d.

S ’25: Didn’t cover this in class; put it on challenge homework instead.

Using the Division Algorithm, we can finally prove that not Even implies
Odd!

Theorem 33.4. ∀x :Z. ¬Even(x)↔ Odd(x).

We’ll do the forward direction of the proof. The other direction is easier
(using proof by contradiction).

Proof. Let x be an arbitrary integer, and suppose x is not even, that is, there
does not exist any integer k such that x = 2k. We must show x is odd, that is,
there exists an integer j such that x = 2j + 1.

By the Division Algorithm, there exist unique integers q and r such that
x = 2q + r, where 0 ≤ r < 2. So there are only two possibilities for r, namely 0
and 1.

• r cannot be zero, since then x = 2q would be even and we assumed x is
not even.

• So r must be 1, in which case x = 2q + 1 and by definition x is odd.

71

34 Modular Equivalence (Wednesday 9 April)

34.1 Modular equivalence

In many situations, we care only about the remainder when some number(s) are
divided by a particular divisor; for example, when modelling things that repeat
cyclically, i.e. “loop around”. In such cases we might not care exactly how many
times something has looped, but only where it currently is in the cycle. This
notion is also important when studying divisibility itself: the remainder in some
sense measures “how far away” a particular number is from being divisible by
the divisor, and keeping track of this for various numbers is often important.

Consider the number line below where we’ve marked all the multiples of m.
If a and b are “at the same place in the cycle” that means they have the same
offset from some multiple of m; it also means, intuitively, that their difference
is a multiple of m. Since we want to treat every multiple of m as being the
same and only care about the remainder or offset between multiples of m, we
can think of “curling up” the number line onto itself into an infinite spiral, so
that all the multiples of m line up. Then we want to consider all the numbers
lined up along any radial line as being “the same”.

These ideas motivate the following definition:

Definition 34.1. If a, b ∈ Z and m ∈ Z+, then a is congruent to b modulo m,
written

a ≡m b,

72

if and only if
m | (a− b).

Remark. People usually use the notation

a ≡ b (mod m)

instead of a ≡m b. But this notation is so bad that we will not use it. This
(mod m) is not the same thing as the mod operator we introduced earlier. It
is not doing anything to b. This is just the way that we indicate that a and
b are equivalent “in the (mod m) world”, that is, if we only care about the
remainder after dividing by m.

(mod m) is standard notation; however, I prefer ≡m because it makes it
more clear that we are talking about a specific kind of relationship.

Let’s continue studying equivalence modulo m, that is, ≡m. First, let’s prove
a couple theorems giving us alternative ways to characterize it.

Theorem 34.2. Let a, b ∈ Z and m ∈ Z+. Then a ≡m b if and only if there
exists k ∈ Z such that a = b+ km.

Proof.

a ≡m b
↔ { Definition of ≡m }

m | (a− b)
↔ { Definition of | }
∃k ∈ Z. km = a− b

↔ { algebra }
∃k ∈ Z. a = b+ km

Theorem 34.3. Let a, b ∈ Z and m ∈ Z+. Then a ≡m b if and only if

amodm = bmodm.

S’20: Didn’t do this proof in class.

Proof. This is an “if and only if”, so we have to prove both directions.
(→) Suppose a ≡m b. Then, by Theorem 34.3, a = b+ km for some integer

k. By the Division Algorithm, we can write a = q1m + r1 and b = q2m + r2
with 0 ≤ r1, r2 < m; we wish to show that r1 = r2. Substituting for a and b in
the equation a = b+ km yields

q1m+ r1 = q2m+ r2 + km.

Rearranging,
r1 − r2 = (q2 − q1 − k)m,

73

which means that (r1 − r2) is divisible by m. However, we know that 0 ≤
r1, r2 < m, and so −m < r1 − r2 < m. In order for r1 − r2 to be a multiple of
m, the only possibility is that r1 − r2 = 0, meaning that r1 = r2.

(←) Suppose amodm = bmodm. If we write a = q1m+r1 and b = q2m+r2
by the Division Algorithm, the assumption that a mod m = b mod m means
r1 = r2. If we subtract a and b, the r’s cancel and we get

a− b = (q1m+ r)− (q2m+ r) = (q1 − q2)m.

Thus m | (a− b) and therefore, by definition, a ≡m b.

Now let’s verify that ≡m behaves the way we would expect an equality-like
thing to behave.

Theorem 34.4. If a ∈ Z and m ∈ Z+, then

a ≡m a

(≡m is reflexive).

Proof. a = a+ 0m, so by Theorem 34.3, a ≡m a.

Theorem 34.5. Let a, b, c ∈ Z and m ∈ Z+. If a ≡m b and b ≡m c, then
a ≡m c (≡m is transitive).

Proof. Again by Theorem 34.3, since a ≡m b and b ≡m c we can find j, k ∈ Z
such that a = b+ jm and b = c+ km. Substituting,

a = b+ jm = (c+ km) + jm = c+ (k + j)m,

and hence by Theorem 34.3 a ≡m c.

Theorem 34.6. For any a, b, c, d ∈ Z and m ∈ Z+, if a ≡m b and c ≡m d, then

(i) a+ c ≡m b+ d, and

(ii) ac ≡m bd.

(that is, ≡m is a congruence with respect to addition and multiplication).

Proof. (i) By Theorem 34.3 we can write a = b+ jm and c = d+ km. Then

a+ c = (b+ jm) + (c+ km) = (b+ c) + (j + k)m,

and thus by Theorem 34.3 again, a+ c ≡m b+ d.

(ii) This time we reason as follows:

ac = (b+ jm)(c+ km) = bc+m(stuff),

that is, when we expand the product, we get one bc term and several other
terms that all have an m we can factor out. We don’t actually need to do
all the algebra—we can see that ac will be bd plus m times some integer,
so ac ≡m bd.

74

Remark. Note that when we have an equality a = b, we can do whatever we
want to it: as long as we do the same thing to both sides they will remain equal.
With ≡m, however, this only works for certain operations! The things we do
to an equivalence have to “play nice” with the operation of taking remainders
modulo m.

From the proof above, we can see the special way addition and multiplication
interact with remainders. For example, if we tried to do a similar proof for
division, we would get stuck: there is no reason to believe that (b+jm)/(c+km)
would be of the form b

c + lm for some integer l.

75

35 Solving modular equivalences and modular
arithmetic (Friday 11 April)

Example. Solve for x:
x+ 7 ≡3 12.

Since ≡3 is reflexive, we know −7 ≡3 −7. Then by Theorem 34.1, we can add
these two equivalences to conclude

x+ 7 + (−7) ≡3 12 + (−7)

and hence
x ≡3 5.

“x ≡3 5” is a valid solution; we could also write x ≡3 2 which is a bit simpler,
and equivalent since 2 ≡3 5. Note x ≡3 2 is really a way of expressing infinitely
many valid solutions for x: it means that

x ∈ {. . . ,−4,−1, 2, 5, 8, 11, . . . }.

We do not usually need to be this pedantic when solving modular equiv-
alences. It would be acceptable to just write the following: “Starting from
x+ 7 ≡3 12, we can subtract 7 from both sides, yielding x ≡3 5 ≡3 2.”

Example. Solve for x:
101x+ 52 ≡10 68

We can first subtract 52 from both sides, yielding

101x ≡10 16 ≡10 6.

It might look like we are stuck at this point: we are not allowed to divide both
sides by 101. However, notice that 101 ≡10 1, and so 101x ≡10 x (since ≡10 is
a congruence with respect to multiplication). Hence, we have

x ≡10 6.

Example. Solve for x:
3x+ 19 ≡7 2(x− 73)

We can solve this as follows:

3x+ 19 ≡7 2(x− 73)
→ { distribute }

3x+ 19 ≡7 2x− 146
→ { reduce 19 and −146 modulo 7 }

3x+ 5 ≡7 2x− 6
→ { subtract 5 from both sides }

3x ≡7 2x− 11
→ { subtract 2x from both sides }

76

x ≡7 −11
→ { −11 ≡7 3 }

x ≡7 3

Example. Solve for x:
x+ 22 ≡19 20x+ 3

Subtracting x+ 3 from both sides yields

19 ≡19 19x.

But since 19 ≡19 0, this reduces to

0 ≡19 0,

which is always true for any value of x. Hence every integer is a solution for x.

Example. Solve for x:
x+ 22 ≡19 20x− 7

This is similar to the previous example, but we end up with

10 ≡19 0,

which is impossible. Hence in this example there are no solutions for x.

S’21: Used to cover the following about modular arithmetic here (i.e. the set
Zn), but didn’t have time for it. Decided to defer it to a later class, if needed.
Honestly it might not be needed at all.

35.1 Modular Arithmetic

Definition 35.1. For m ∈ Z+, define Zm = {0, 1, . . . ,m− 1}.

Note that |Zm| = m. Zm is the set of possible remainders when we divide
by m. In fact, Zm is the “curled up number line” we drew a picture of the other
day. One of the reasons this works nicely is that we can continue to do addition
and multiplication on the curled-up number line:

Definition 35.2. For m ∈ Z+, define addition +m : Zm × Zm → Zm and
multiplication ·m : Zm × Zm → Zm as follows:

a+m b = (a+ b)modm

a ·m b = (a · b)modm

Example.

• 7 +11 9 = (7 + 9)mod 11 = 16mod 11 = 5.

• 7 ·11 9 = (7 · 9)mod 11 = 63mod 11 = 8.

77

These operations have a number of nice properties that we would expect
from things called “addition” and “multiplication”:

• Commutative: +m and ·m are both commutative, e.g. a+m b = b+m a.

• Associative: both operations are associative, e.g. a·m(b·mc) = (a·mb)·mc.

• Identities: 0 is the identity element for +m (that is, 0+m a = a+m 0 = a)
and 1 is the identity element for ·m (that is, 1 ·m a = a ·m 1 = a).

• Distributivity: a ·m (b+m c) = (a ·m b) +m (a ·m c).

• Additive inverses: every x ∈ Zm has an additive inverse, that is, some
y ∈ Zm such that x+m y = 0.

A set with two operations having these properties is known as a commutative
ring ; you would learn more about such things in an abstract algebra course.

78

36 Primes (Monday 14 April)

You all know about prime numbers and prime factorization, but we’re going to
study them in a bit more rigor than perhaps you’ve seen before.

Definition 36.1. An integer p > 1 is prime iff the only factors of p are 1 and p,
that is, a | p→ (a = 1 ∨ a = p). Integers > 1 that are not prime are composite.

Remark. 1 is neither prime nor composite! It is special because it’s the multi-
plicative identity.

Example. 2, 3, 5, and 7 are prime. 6 is composite since 2 | 6.

Theorem 36.2 (Fundamental Theorem of Arithmetic (FTA)). Every positive
integer n can be written as the product of zero or more primes. The product is
unique if the primes are listed in order from smallest to largest.

There are two things to prove: first, that it is always possible to write any
positive integer as a product of primes, and second, that the product is always
unique. Uniqueness can be proved using techniques from chapter 4 (for a proof,
see page 271 of Rosen, Lemma 3). However, the other half requires induction.

Theorem 36.3. Every integer n ≥ 2 can be written as a product of primes.

Note we focus on n ≥ 2 here; for n = 1 we simply note that it is a product
of zero primes.

Proof. Let P (n) be the proposition “n can be written as a product of primes”.
We wish to prove ∀n ≥ 2. P (n). Let’s try a normal proof by (weak) induction
and see where it goes wrong.

• For the base case, when n = 2, P (2) is clearly true since 2 itself is prime,
so it can be written as a “product” of just one prime.

• Let k ≥ 2 and suppose as our induction hypothesis that k can be written
as a product of primes. Then we must show that k+1 can also be written
as a product of primes.

If k + 1 is prime, then we are done: it can be written as a “product” of
one prime (itself). Otherwise, k+1 is composite, which means there must
be positive integers 2 ≤ a ≤ b ≤ k such that k + 1 = ab.

But now we are stuck! Our induction hypothesis only tells us something
about k; it says nothing about a and b. The problem is that knowing
something about k does not really help us say anything about k + 1.

Instead, we can use a proof by strong induction. The base case is the same,
but the induction step goes like this:

• Let k ≥ 2 and suppose as our induction hypothesis that every number
from 2 up to k can be written as a product of primes. Then we must show
that k + 1 can also be written as a product of primes.

79

As before, the interesting case is when k + 1 = ab is composite, with
2 ≤ a ≤ b ≤ k. Now, by the induction hypothesis, we know that a and b
can both be written as products of primes; thus, so can k + 1, since it is
the product of a and b.

Remark. Note it says zero or more primes—what’s the product of zero primes?
It’s 1, of course, the multiplicative identity. This is why the theorem applies to
all positive integers, even 1, which can be written uniquely as the product of
zero primes. Primes themselves can be written as the product of a single prime.

Theorem 36.4. If n is composite, it has a prime divisor ≤
√
n.

Remark. It’s worth spelling out how to write this in formal predicate logic:

∀n ∈ Z+. Composite(n)→ ∃p ∈ Z+. Prime(p) ∧ (p | n) ∧ p ≤
√
n.

The phrase “it has a prime divisor ≤
√
n” actually expands into an ∃ with

a conjunction of three propositions! Each of “prime”, “divisor”, and “≤
√
n”

corresponds to a separate property of the number that is claimed to exist.

Proof. Suppose n is composite. That means there exists a divisor a which is
neither 1 nor n. Then in turn that means there must be some b such that
n = ab, and we note that b also is neither 1 nor n. If both a >

√
n and b >

√
n,

then their product ab > n, which is a contradiction—hence either a ≤
√
n or

b ≤
√
n. Without loss of generality, say a ≤

√
n. We are almost done but

not quite—a is a divisor of n, and ≤
√
n, but we don’t necessarily know that

it is prime. However, by the Fundamental Theorem of Arithmetic, there is
some prime p which divides a, and by transitivity of divisibility p | n, and also
p ≤ a ≤

√
n.

Example. The sieve of Eratosthenes is an ancient Greek method for finding all
the primes up to some limit. We start by circling 2 as the first prime, then
crossing out all multiples of 2. Since the 3 is not crossed out, it must be prime
too. We circle it and cross out all multiples of 3. The 4 is already crossed out
now, but 5 is not, which means it must be prime—if it were composite it would
have some smaller prime divisor, but we have already crossed out all multiples
of smaller primes. So we circle 5 and cross out all its multiples; finally we circle
7 and cross out all its multiples. But now we can stop! We have found all the
primes up to

√
100 = 10. The rest of the numbers up to 10 are already crossed

out; by the previous theorem, composite numbers up to 100 must have a prime
divisor less than or equal to 10, but we have already crossed out all multiples of
primes less than 10. So all the remaining numbers must be prime and we can
simply circle them.

80

Here is another classic piece of mathematics from ancient Greece:

Theorem 36.5. There are infinitely many primes.

Proof. By contradiction. Suppose there were only finitely many primes, call
them p1, p2, . . . , pn. Let Q be one more than the product of all the primes,
Q = p1p2 . . . pn + 1. Notice that Q is not divisible by any of the primes, since
Q ≡ 1 (mod p) for each prime p. But by the FTA, Q must be divisible by
a prime! This is a contradiction, and we conclude that in fact there must be
infinitely many primes. (Question to ponder: is the Q in this proof always a
prime?)

So there is no largest prime; but the currently (as of April 14, 2025) largest
known prime—that is, the largest number we can specifically point to and say
for certain it is prime—is

2136,279,841 − 1.

(See https://www.mersenne.org/primes/?press=M136279841.) This number
has 41, 024, 320 decimal digits. If it were printed in a book, with, say, 100 digits
per line and 50 lines of digits per page, it would require around 8204 pages—
probably a 20-volume set of books taking up a whole shelf!

36.1 Divisibility tests

Example. Is 7431 prime? No, it’s divisible by 3 since the sum of its digits is.
Many of you perhaps know this divisibility rule, but do you know why it works?

Theorem 36.6. A number is divisible by 3 iff the sum of its digits in base 10
is also divisible by 3.

81

Note this process can be iterated: for example, 7431 is divisible by 3 if and
only if 7+4+3+1 = 15 is; and 15 in turn is divisible by 3 if and only if 1+5 = 6
is.

Proof. Let n be any positive integer. First, write n in terms of its base-10
expansion:

n = 10kdk + 10k−1dk−1 + · · ·+ 10d1 + d0

Note first that 10 ≡3 1, since 10 = 3·3+1. Since we have proved that equivalence
modulo m is compatible with addition and multiplication, we can replace every
10 in the above expansion by 1, and get something that is equivalent modulo 3:

n = 10kdk + 10k−1dk−1 + · · ·+ 10d1 + d0 ≡3 dk + dk−1 + · · ·+ d1 + d0

Thus, we have shown that n is equivalent modulo 3 to the sum of its base-10
digits.

This also shows why for 2 and 5 we can just look at the last digit: since 2
and 5 are both divisors of 10, we have 10 ≡2 0 and 10 ≡5 0. So replacing 10
with 0 in the expansion for n tells us that n ≡2 d0 and n ≡5 d0.

What about 7? Let n be a positive integer and write n = 10m + d0. For
example, if n = 7451 we have m = 745 and d0 = 1. We reason as follows:

10m+ d0 ≡7 0
↔ { Multiply both sides by −2 (see note!) }
−20m− 2d0 ≡7 0

↔ { −20 ≡7 1 }
m− 2d0 ≡7 0

Thus, n is divisible by 7 if and only if m − 2d0 is. That is, we take the last
digit of n, double it, and subtract from the number formed by the rest of the
digits. For example, doing this process on 7451 yields 745 − 2 · 1 = 743; doing
it again yields 74− 2 · 3 = 68, and 68 is not divisible by 7 (it is 7 · 10− 2). On
the other hand, 7441 yields 742, which yields 70, which is divisible by 7, and
indeed, 163 · 7 = 7441.

Note, there is actually a key piece missing from our proof above: although
we proved that we can always multiply both sides of a modular equivalence by
the same number (−2 in this case), we don’t yet know that we can divide both
sides by the same number, which we need for that step to be an if and only if.
In fact, sometimes we can’t! But it turns out this step is allowed since 2 and 7
share no common factors. We will prove this later in the week.

82

37 GCD and the Euclidean Algorithm (Wednes-
day 16 April)

What is the GCD of 60 and 18? Of 7169 and 7811?

37.1 The divisibility lattice

We are used to thinking of the natural numbers like this:

≤5≤4≤3≤2≤1≤0

They are arranged along a number line, in order according to the ≤ relation.
Here we’ve drawn an arrow from each number to the next. Notice that because
≤ is transitive, there is a path following the arrows from one number to another
iff the first is less than or equal to the second. We’ve seen before that ≤ is
intimately related to addition, so we can think of this chain of arrows as a
picture of the additive structure of N.

The divisibility relation a | b, on the other hand, gives us a way to think
about the multiplicative structure of the natural numbers. Let’s draw a similar
kind of diagram of the natural numbers where a and b are connected by an arrow
whenever a | b. (However, ff a | b | c then we won’t bother drawing an arrow
a→ c: since divisibility is transitive, we can just follow the path a→ b→ c to
see that a | c. However, abstractly the arrow is still “there”, we just won’t draw
it.)

83

Obviously this is just a tiny part of the entire (infinite) diagram. Here are a
few observations:

• This diagram is obviously much more complicated than the diagram for ≤!
This is, in some sense, the reason why studying the multiplicative structure
of N is much more interesting than studying the additive structure.

• All the primes are at the bottom, right above 1. Composite numbers come
in “layers” above that depending on how many prime divisors they have.

• The greatest common divisor of two numbers a and b is the highest number
in the diagram from which we can travel up to both a and b. For example,

84

we can see that the GCD of 60 and 18 is 6, since from 6 there is a path
along arrows upwards to both 60 and 18, and there is no higher node with
this property.

• Likewise, the least common multiple of a and b is the lowest number we
can reach from both a and b. In this example, the LCM of 60 and 18 is
180.

• Where should 0 go in this diagram? In fact, it has to go at the “top”,
since every number divides 0, hence there is an arrow from every natural
number up to 0.

• Generally speaking, numbers get bigger as we go up the diagram; but it
is not true that higher numbers are always greater than lower ones. For
example, 35 would go in the second layer from the bottom, but 35 < 30
which is in the third layer. And this is dramatically false in the case of
0, which is less than all other natural numbers, but is at the top of our
divisibility diagram.

37.2 GCD and LCM

Definition 37.1. Let a, b ∈ N. Then the greatest common divisor of a and b,
denoted gcd(a, b), is the unique natural number such that for all d ∈ N,

(d | gcd(a, b))↔ (d | a ∧ d | b).

In the left-to-right direction, this says that anything which divides gcd(a, b)
must be a common divisor of a and b. Because divisibility is transitive, this
will clearly be the case when gcd(a, b) is a divisor of both a and b. And in
fact, picking d = gcd(a, b) shows that this must be the case. In the right-to-
left direction, this says that any common divisor of a and b must divide their
GCD. This is what makes it the “greatest” common divisor: there can’t be any
common divisor d which is “above” the GCD.

Remark. Note that this definition doesn’t say anything about ≤! The word
greatest in the phrase greatest common divisor should really be taken to mean
highest in the divisibility diagram, not “greater than” in the usual ≥ sense.

Example.

gcd(6, 10) = 2

gcd(2, 3) = 1

gcd(2, 4) = 2

gcd(3, 3) = 3

gcd(0, 7) = 7

gcd(0, 0) = 0

If we took the word “greatest” in GCD to refer to the ≤ relation, then we would
have to say gcd(0, 0) is undefined; every natural number is a common divisor of

85

0 and 0, and there is no greatest natural number. However, if “greatest” means
“highest in the divisibility diagram” then clearly the answer should be 0. And
indeed, we can easily check that 0 satisfies the definition: for every d ∈ N,

(d | 0)↔ (d | 0 ∧ d | 0)

is trivially true.

Definition 37.2. The least common multiple of a, b ∈ N is the unique natural
number such that for all m ∈ N,

(lcm(a, b) | m)↔ (a | m ∧ b | m).

We won’t talk much more about lcm—it has very similar properties to gcd
but with everything flipped.

37.3 Computing GCD and LCM via factoring

One way to compute the GCD of a and b (and the way you’re probably familiar
with from grade school) is to factor both, and pick the biggest power of each
prime that divides both. For example,

gcd(18, 60) = gcd(21 · 32 · 50, 22 · 31 · 51) = 21 · 31 · 50 = 6.

In general, consider writing a natural number n as an infinite product of all the
primes raised to powers (if n does not have a certain prime p as a divisor, we
just set p’s exponent to 0):

a = 2a23a35a57a7 . . .

Then in general,

gcd(a, b) = gcd(2a23a35a5 . . . , 2b23b35b5 . . .) = 2min(a2,b2)3min(a3,b3)5min(a5,b5) . . .

That is, we take the minimum power of each prime. This works even when some
of the powers are 0. The proof is not too hard and left as an exercise.

Likewise, the LCM can be found by taking the max of each prime power:

lcm(a, b) = lcm(2a23a35a5 . . . , 2b23b35b5 . . .) = 2max(a2,b2)3max(a3,b3)5max(a5,b5) . . .

Incidentally, this shows us that

Theorem 37.3. For every a, b ∈ N,

gcd(a, b) · lcm(a, b) = ab.

Proof. Follows from the fact that min(x, y) + max(x, y) = x+ y.

86

37.4 Computing GCD via the Euclidean algorithm

This method of computing the GCD is not very practical for larger numbers,
because factoring takes a long time. It turns out there is a much better way
that is actually used in practice. To see why it works, we’ll first need a few
lemmas and theorems about gcd.

Lemma 37.4. gcd(a, b) = gcd(b, a).

Proof. Look at the definition of gcd and note that ∧ is commutative.

Theorem 37.5. Let a, b ∈ N. Then for all k ∈ Z,

gcd(a, b) = gcd(a+ kb, b).

Proof. Omitted in class. See Bonus Proofs section below.

Theorem 37.6. Let a, b ∈ N. Then gcd(a, b) = gcd(b, amod b).

Proof. By the division algorithm write a = bq + r. Then

gcd(a, b)
= { Division algorithm, substitute for a }

gcd(bq + r, b)
= { Theorem 37.5 }

gcd(bq + r − bq, b)
= { algebra }

gcd(r, b)
= { gcd is commutative }

gcd(b, r)
= { Definition of mod }

gcd(b, amod b)

Notice that by the division algorithm, r = a mod b is guaranteed to be
strictly smaller than b. So if we replace gcd(a, b) by gcd(b, a mod b) then the
second input to gcd is getting smaller. This leads to:

Definition 37.7 (Euclidean Algorithm). Let a, b ∈ N. To find gcd(a, b), re-
peatedly apply these rules:

gcd(a, 0) = a

gcd(a, b) = gcd(b, amod b)

That is, just keep repeating the second case until reaching the first case. This
is guaranteed to stop in a finite amount of time since the second input to gcd
gets smaller with each step; it must hit zero eventually.

87

Example.

gcd(60, 18)

= gcd(18, 6)

= gcd(6, 0)

= 6

Example.

gcd(7169, 7811)

= gcd(7811, 7169)

= gcd(7169, 642)

= gcd(642, 107)

= gcd(107, 0)

= 107

We can confirm that 107 is indeed a common divisor of 7169 = 107× 67 and
7811 = 107 × 73. Since 67 and 73 are both prime there is obviously no bigger
common divisor.

37.5 Bonus proofs

Lemma 37.8. Let a, b ∈ N. If a | b and b | a, then a = b.

Remark. This property is called antisymmetry. Notice ≤ has this property too:
if a ≤ b and b ≤ a, then a = b.

Proof. If a | b then there is some k ∈ Z such that ka = b. Likewise, if b | a
then jb = a. Substituting, we find that a = jb = jka, and hence jk = 1. Since
j, k ∈ Z the only possibilities are j = k = 1 or j = k = −1; since a and b are
both natural numbers they can’t be negative, so in fact j = k = 1 and a = b.

Theorem 37.9. Let a, b ∈ N. Then for all k ∈ Z,

gcd(a, b) = gcd(a+ kb, b).

Proof. Using the lemma above, we will show gcd(a, b) = gcd(a+kb, b) by show-
ing each divides the other.

• gcd(a, b) | a and gcd(a, b) | b by definition. Using a theorem we proved
previously (Theorem 33.2), we can therefore conclude that gcd(a, b) | (a+
kb). Hence, since gcd(a, b) | (a + kb) and gcd(a, b) | b, by definition of
gcd(a+ kb, b) we conclude that gcd(a, b) | gcd(a+ kb, b).

• By definition, gcd(a+ kb, b) | (a+ kb) and gcd(a+ kb, b) | b. Hence by the
same theorem as in the other case, it also divides a combination of them,
gcd(a + kb, b) | (a + kb + (−k)b) = a. Since it divides both a and b, by
definition of gcd(a, b) we have gcd(a+ kb, b) | gcd(a, b).

Since each divides the other, we conclude that gcd(a, b) = gcd(a+ kb, b).

88

38 Bézout’s Theorem (Friday 18 April)

A mathematical frog starts at zero on the number line. He can jump 30 units
in either direction, or hop 18 units in either direction. Which positions on the
number line can he reach? Can he reach 12? 6? 3? 1? 8? 42252? 42254?

Discuss: the frog can reach 12 by jumping right then hopping left. He can
reach 6 by hopping right twice then jumping left. He can’t reach 3 or 1, since
jumps and hops are both even and 3 is odd. 8 is even, but he can’t reach that
either since in fact both 12 and 30 are multiples of 6, but 8 is not. We can check
that 4+ 2+ 2+ 5+ 2 = 15 is divisible by 3, hence 42252 is divisible by 6, so we
conjecture he can reach that, but not 42254.

In fact, it turns out that the frog can reach position n if and only if 6 | n.
What’s special about 6? It’s the GCD of 18 and 30.

Theorem 38.1 (Bézout’s Theorem). Let a, b ∈ N. Then there exist s, t ∈ Z
such that

sa+ tb = gcd(a, b).

This is like saying we can reach gcd(a, b) by some combination of jumps and
hops.

Proof (sketch). Let S = {ja + kb | j, k ∈ Z}, the set of all linear combinations
of a and b. It’s a countably infinite set, and definitely contains lots of both
positive and negative numbers as well as zero. But it must have some smallest
positive element—call it d.

• Show d | a: write a = dq + r; show r ∈ S; conclude r = 0 since r < d but
d is the smallest positive element of S.

• Likewise show d | b.

• Show if c | a and c | b then c | d.

• Conclude d = gcd(a, b) by definition of gcd.

S’20: Above is what we actually did in class. Below is a fuller version of the
same proof.

Proof. Let S = {ja + kb | j, k ∈ Z} be the set of all linear combinations of a
and b. Note that S must have some smallest positive element, call it d.5

We first show that d | a. By the Division Algorithm we can write a = dq+ r
for some q, r such that 0 ≤ r < d. Since d ∈ S it must be equal to sa + tb for
some s, t ∈ Z. Then

r = a− dq = a− (sa+ tb)q = a− sqa− tqb = (1− sq)a+ (−tq)b,
5This is not automatically true for any set—for example, the set of real numbers R has no

smallest positive element. But it is true for sets of integers in particular; this is known as the
well-ordering principle, which it turns out is equivalent to induction.

89

which is also a linear combination of a and b. Hence r ∈ S as well. But r < d
and d is the smallest positive element of S; hence r cannot be positive and we
must have r = 0. Thus a = dq+ r = dq+0, so d | a. A similar argument shows
d | b as well.

Finally, for any c, if c | a and c | b, then c also divides d since d is a linear
combination of a and b.

We have shown that d divides both a and b, and that conversely any common
divisor of a and b must also divide d; hence, by definition, d = gcd(a, b).

38.1 The Extended Euclidean Algorithm

Given some a and b, how do we actually find s and t? The above proof is not
much help: it merely shows s and t must exist, but does not actually show
us how to find them. Fortunately, there is an efficient procedure for doing so,
known as the Extended Euclidean Algorithm.

Let’s take a = 60, b = 18 as an example. We begin by making a table with
three columns labelled s, t, and 60s + 18t. In the first row we set s = 1 and
t = 0; in the second row we do the reverse. The value in the third column
should always be the corresponding value of the expression 60s+ 18t.

s t 60s+ 18t
1 0 60
0 1 18

Of course, 60 · 1 + 18 · 0 = 60, and 60 · 0 + 18 · 1 = 18, so we fill in these values
in the third column.

The idea is that we are going to run the Euclidean Algorithm on the values
in the third column, but along the way, we are going to keep track of the values
of s and t that generate each. If we were running the Euclidean Algorithm to
compute gcd(60, 18), our first step would be to replace (60, 18) by (18, 6) (since
60mod 18 = 6). So we place a 6 in the third column under the 18:

s t 60s+ 18t
1 0 60
0 1 18

6

But what should we put in the first two columns? The key is to think about
how we get 6 from 60 and 18. We get the remainder 6 by subtracting some
number of copies of 18 from 60: in fact, we subtract 60 div 18 = 3 copies of
18. The big insight is that we can do exactly the same operation in each of the
first two columns, namely, subtract three times the bottom value from the top
value. In general, if 60s1 + 18t1 = x and 60s2 + 18t2 = y, then

x− qy = (60s1 + 18t1)− q(60s2 + 18t2) = 60(s1 − qs2) + 18(t1 − qt2).

So we put 1 − 3 · 0 = 1 in the first column and 0 − 3 · 1 = −3 in the second
column:

90

s t 60s+ 18t
1 0 60
0 1 18
1 −3 6

And indeed, we can verify that 60 · 1 + 18 · (−3) = 6.
If we proceed one more step, we find that 18mod 6 = 0, which means that

6 is actually the gcd of 60 and 18, and we have found the coefficients s and t we
were looking for.

s t 60s+ 18t
1 0 60
0 1 18
1 −3 6

0

Let’s do one more example. This time, let’s make a fourth column where we
record the quotient q. That is, at each step we look at the two last values in the
third column and divide the upper value by the lower; we record the result q in
the fourth column next to the lower value; then we subtract q times the bottom
row from the one above it to generate the next row. This time let’s take a = 39
and b = 16.

s t 39s+ 16t q
1 0 39
0 1 16 2
1 −2 7 2
−2 5 2 3
7 −17 1 2

0

So we have found that gcd(39, 16) = 1, and that 39 · 7 + 16 · (−17) = 1 (check
this!). In other words, if there is a frog that can jump 39 units or hop 16 units,
it could reach 1 starting from the origin by jumping 7 times to the right and 17
times to the left.

91

39 Modular inverses and Fermat’s Little Theo-
rem (Monday 21 April)

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

What patterns do you notice? How was the above grid constructed? Can you
do something similar with other grid sizes?

13612511410392817

7246135

Can you figure out how the above two strips were constructed? Can you make
some other examples?

39.1 Modular Inverses

Bézout’s Theorem is rarely useful in and of itself; but it’s an important building
block in several other things we care about more directly. The biggest is the
following fact:

Theorem 39.1 (Modular inverses). Let a ∈ Z and m ∈ Z+. If gcd(a,m) = 1,
then there exists some b ∈ Z such that ab ≡m 1. We say that b is the modular
inverse of a modulo m.

Proof. By Bézout’s Theorem there exist integers s and t such that sa+ tm = 1.
Since tm ≡m 0, in fact

1 ≡m sa+ tm ≡m sa.

So s itself is the modular inverse of a.

(This theorem can actually be stated as an “if and only if”. Can you prove
the other direction? i.e. if ab ≡m 1, then gcd(a,m) = 1.)

Of course, this proof shows that not only do modular inverses exist, but we
can compute them easily using the extended Euclidean algorithm!

Example. Solve for x:
3x ≡7 5.

Since gcd(3, 7) = 1, we can multiply both sides by the modular inverse of 3,
which will “cancel” the 3 from the left. Using the extended Euclidean algorithm

92

(or just trying a few values), we find that the inverse of 3 is (−2) ≡7 5. (We can
verify that 3 · 5 = 15 ≡7 1.) Multiplying both sides of the equation by 5, we get

x ≡7 25 ≡7 4.

So the solution is x ≡7 4, that is, any value of x which is four more than a
multiple of 7 will be a solution. We can check this: 3 · 4 = 12 ≡7 5, as desired.

Example. Solve for x:
3x ≡9 5− x.

We can’t just start by finding a modular inverse of 3: for one thing, we would
still have an x on the other side of the equation; for another thing, 3 and 9 share
a common factor so 3 actually doesn’t have a modular inverse modulo 9. We
should add x to both sides of the equation first, which yields

4x ≡9 5.

We find that the modular inverse of 4 modulo 9 is −2 ≡9 7. Multiplying both
sides of the equation by −2 (we could also multiply both sides by 7) we get

x ≡9 −10 ≡9 −1 ≡9 8.

Checking, if we take x = −1 we get 3(−1) = −3 ≡9 5− (−1) = 6.

39.2 Chinese Remainder Theorem

S’25: Left out CRT this time around in the interest of time. It’s technically
needed for the proof of RSA but can pretty safely be skipped.

Theorem 39.2 (Chinese Remainder Theorem). Let gcd(m,n) = 1 and a, b ∈ Z.
Then the system of equivalences

x ≡m a

x ≡n b

has a unique solution modulo mn.

Proof. See https://mathlesstraveled.com/2019/04/10/chinese-remainder-theorem-proof/.

One way to understand this theorem is that it gives us a way to replace any
two equations x ≡m a and x ≡n b with a single equation x ≡mn c (as long as m
and n share no common factors). If we have more than two equations, we can
simply iterate this process.

Here is a simple way to solve a system of modular equivalences by hand.

93

Example. Solve the system of equivalences

x ≡5 1 (1)

x ≡6 2 (2)

x ≡7 3 (3)

First of all, we can see that 5, 6, and 7 do not share any common factors, so we
are guaranteed a unique solution modulo 5 · 6 · 7 = 210. Let’s see how to find
it. The overall plan is as follows:

• Given x ≡m a, write x = mk + a for some k.

• Substitute this expression for x in the next equivalence.

• Solve for k.

• Substitute the resulting expression for k back into the expression for x.

• Repeat until done.

Let’s see this in action. First, from x ≡5 1 we can write

x = 5t+ 1 (4)

for some t ∈ Z. Substituting this expression for x into equation (2) yields
5t+ 1 ≡6 2, which we can solve for t to get

t ≡6 5

(note that 5 ≡6 −1, so it is its own inverse). We can thus write t = 6u + 5 for
some u ∈ Z. Substituting this expression for t back into equation (4), we get

x = 5(6u+ 5) + 1 = 30u+ 26. (5)

Now we repeat the process with the last equation. Substituting for x, we
get 30u + 26 ≡7 3, which is equivalent to 2u ≡7 5. Solving for u, we find that
u ≡7 6, so we may write u = 7v + 6 for some v ∈ Z. Substituting back into
equation (5) yields our final answer,

x = 30(7v + 6) + 26 = 210v + 180 + 26 = 210v + 206,

meaning the solutions are all of the form x ≡210 206. Indeed, we can verify that
206mod 5 = 1, 206mod 6 = 2, and 206mod 7 = 3.

39.3 Fermat’s Little Theorem

If you play around a bit with arithmetic modulo p, one natural question you
might end up asking is: if I start with some number a and keep multiplying a
by itself (reducing modulo p every time), will I ever reach 1? If so, how many
times do I have to multiply by a before reaching 1? If you did this when p is
a prime, you would quickly notice that you always seem to reach 1 eventually,
and that the number of iterations needed is always a divisor of p−1. This leads
us to:

94

Theorem 39.3. If p is prime and a is any integer such that p ∤ a, then

ap−1 ≡p 1.

This seems kind of weird and random, but in fact this theorem expresses
something really fundamental about the way multiplication works modulo p.
As we will see, this theorem forms an important basis for a lot of modern
cryptography. It’s also the basis for how tests for primality work. Consider
the contrapositive: if ap−1 ̸≡p 1, then p is not prime. So given a number p
we can pick some a that shares no common factors with p, and try computing
ap−1 mod p. If we get 1, we can’t conclude anything; but if we get any result
other than 1, we know for sure that p is not prime (but it doesn’t tell us what
the factors of p are!). This is not a great test by itself, it turns out, but it is the
basis for more sophisticated tests.

Proof. Consider the set

S = {amod p, 2amod p, 3amod p, . . . , (p− 1)amod p}.

For example, if p = 7 and a = 3, we get the set

{3, 6, 2, 5, 1, 4}.

Notice how this contains every integer between 1 and 6. This corresponds to one
of the pictures from the start of class—when we count by a’s and wrap modulo
p, we hit every cell exactly once.

We can make this precise: we claim that if p ∤ a then S contains every
number in {1, . . . , (p− 1)} exactly once. For suppose there are two multiples of
a in S which are equivalent modulo p, that is,

ja ≡p ka.

Then by definition, p | (ja − ka) and so p | (j − k)a. Since p does not divide
a, it must divide (j − k). But j and k are both greater than 0 and less than p,
so their difference cannot be as small as −p or as big as p. The only way j − k
could be divisible by p is if j − k = 0, that is, j = k. This shows that the two
“different” multiples of a with the same remainder modulo p actually have to
be the same—or, put another way, any two truly different multiples of a must
also have different remainders modulo p.

Now consider taking the product of all the elements of S:

a · 2a · 3a · · · · · (p− 1)a = ap−1(p− 1)!

If we consider this modulo p, we know that every possible remainder from 1 up
to (p− 1) occurs exactly once, so

a · 2a · 3a · · · · · (p− 1)a ≡p 1 · 2 · 3 · · · · · (p− 1).

95

Putting these together,

ap−1(p− 1)! ≡p (p− 1)!.

Since (p− 1)! shares no common factors with p (p is prime, and (p− 1)! is the
product of a bunch of numbers less than p, so p cannot possibly be a divisor
of (p − 1)!), it has a multiplicative inverse modulo p, and we are justified in
canceling it from both sides of the equation. This leaves us with

ap−1 ≡p 1,

which is what we wanted to show.

96

40 Public-key cryptography and RSA (Wednes-
day 23 April)

J GPS POF XFMDPNF PVS OFX VOJDPSO PWFSMPSET

This is a Caesar cipher—shift every letter by the same amount through the
alphabet. It’s not a very secure cipher, but there are (slightly) more secure
variants, such as a Vigenère cipher, where instead of a single shift amount we
choose a sequence of shift amounts and cycle through them. Typically one would
choose a key word and use the letters of the key word to determine the shift
amounts.

These are all known as symmetric ciphers: in order to communicate, sender
and receiver must have a shared, secret key. The secret key must be known by
the people communicating (and no one else), and the same key is used for both
encrypting and decrypting. This works fine in many situations, but it has some
drawbacks:

• The two parties must somehow agree on a secret key before they can
communicate. In order to keep the key a secret, typically this must be
done in person.

• Because of this need to agree on a secret key, it is impossible for people
who have never met to communicate securely.

40.1 Public-key cryptography

There is a different idea known as a public-key cryptosystem which does not
have these drawbacks. We’ll start by outlining the general properties of such a
system.

• Everyone who wants to communicate picks their own personal pair of keys:
a private key and a public key.

• The private key should be kept absolutely, 100% secret.

• The public key should be published as widely as possible. You should put
your public key on your website, in a public directory of public keys (like
a phone book), and so on.

• In order to send a message, the sender looks up the public key of the
recipient and uses it to encode the message.

• The recipient decodes the message using their private key.

In order for this to make sense the system should have a few properties:

• A public and private key work together so that messages encrypted using
a public key can only be decrypted using the corresponding private key.

97

• It should be impossible to figure out someone’s corresponding private key
if you only know their public key.

It is not at all obvious that such a scheme is even possible! But it is possible
using some clever mathematics.

40.2 Some facts

Here are a few facts that you’ll have to take on faith for now.

• Multiplying two large integers can be done very quickly. By large
we have in mind something like 500 digits. This may sound like a lot, but
a modern computer can multiply two 500-digit numbers in a miniscule
fraction of a second. If you were abducted by a sadistic math nerd, locked
in a room, and told you will not be let out until you correctly multiply
two 500-digit numbers, it would be tedious but you could do it. You could
probably do it in an afternoon.

• On the other hand, the opposite operation—factoring a large inte-
ger into its prime factors—is believed to be very difficult. Given
a 1000-digit number n, there are approximately 8×10496 primes less than√
n. Even if you could test a trillion trillion trillion trillion trillion primes

per second to see whether they are a divisor of n, it would still take many
lifetimes of the universe to try them all. We do know of better methods
than that—but not anywhere near good enough to make it in any way
feasible.

• You might think that this means testing whether a number is prime is
difficult too—surely, the only way to test whether a number is prime is
to try factoring it? Surprisingly, this is false—it is possible to quickly
test whether a number is prime without factoring it! (In fact,
most such tests rest fundamentally upon Fermat’s Little Theorem, which
tells us that if p is prime and p does not divide a, then ap−1 ≡p 1—so
we can take a number n we want to test and some a < n and compute
an−1 mod n. If we get something other than 1, then n is definitely not
prime. This isn’t a great test, but more sophisticated tests are based on
similar ideas.)

These ingredients come together to give us RSA.

40.3 RSA

RSA was discovered in 1977 by Ron Rivest, Adi Shamir, and Leonard Adle-
man. (It was actually independently discovered four years earlier, by Clifford
Cocks, while he was working for the UK’s GCHQ—basically the equivalent of
the NSA—but this wasn’t known until 1997 when it became declassified.)

Here’s how generating a private/public key pair works:

98

• Pick two large (say, 500-digit) primes p and q. This can be done efficiently:
just pick a random 500-digit number and test it to see if it is prime (which
can be done efficiently), if not, pick another one and repeat. For 500-digit
numbers about one in every 2300 integers is prime, so you might have to
repeat this procedure a few thousand times before finding a prime, but
that’s not a big deal. Even if this process were to take a few seconds or
even minutes, you only have to do it once when creating a public and
private key.

• Compute n = pq. As mentioned previously, this can be done very quickly.

• Choose some e such that 1 < e < (p−1)(q−1) and gcd(e, (p−1)(q−1)) = 1.
For example, we could randomly pick an e and compute the gcd (which
is very efficient using the Euclidean Algorithm) to make sure it is 1. If
not, pick a different e and repeat. In practice, it can be beneficial to use
specific values of e to make encoding more efficient, so one could instead
fix the value of e and keep picking p and q until gcd(e, (p− 1)(q− 1)) = 1.

• Find d such that de = 1 (mod (p−1)(q−1)), that is, the modular inverse of
emodulo (p−1)(q−1). Since e shares no common factors with (p−1)(q−1),
a modular inverse is guaranteed to exist, and we can find it easily with
the extended Euclidean algorithm.

• p, q, and d are the private key and should be kept absolutely secret.

• n and e are the public key and should be published widely.

As far as we know, of course, it is very difficult to find p and q by factoring
n. In turn this means it is difficult to find d from e. We can easily compute d
from e if we know (p− 1)(q − 1), but there’s no way to find (p− 1)(q − 1) from
n without first factoring n to find out what p and q are. This means that no
one can figure out d, p, or q (the private key) if they only know n and e (the
public key).

Now, to encrypt a message:

• Find or look up the public key values n and e for the desired recipient.

• Turn the message into an integer M < n. It does not matter how, as long
as the sender and receiver agree on how this will be done. The method can
even be public—knowing how the message is encoded as an integer will
not help anyone read it once it is encrypted. In practice, most information
that people want to encrypt is already stored on a computer as a sequence
of bits, which can readily be interpreted as an integer. If the message is
too long to fit into an integer which is less than n, it can simply be broken
into multiple parts, and each part encoded separately.

• Compute C = Me mod n. This can be done efficiently due to two key
observations:

99

– It is not necessary to first compute Me (which might be truly enor-
mous) and then reduce modulo n at the end. Because (a ·b)modn =
((amodn) · (bmodn))modn, we can keep reducing modulo n along
the way, after every multiplication. That way, we never have to deal
with numbers bigger than n2.

– We don’t have to simply multiply M by itself e times. Instead we can
use something called repeated squaring. For example, if we want to
compute M16, we can first compute M ·M = M2; then we can square
that to get (M2)·(M2) = M4; squaring that yields (M4)·(M4) = M8;
and one final squaring yields M16. If we want an exponent which is
not a power of two we can simply throw in some extra multiplications
by M (for example, if we want M9 we can get M8 as described above
and then multiply by M). In this way we can compute M raised to
very large powers with only a few multiplications (it takes about
2 log2 e multiplications in the worst case for exponent e).

• Send C.

It turns out that given only C, e, and n, it is (as far as we know) very
difficult to find an M such that Me ≡n C. So no one can read the encrypted
message C even if they know the public key (e, n) that was used to encrypt it.

However, to decrypt the encrypted message C, the recipient simply does
the same thing but using their private key d as the exponent instead of e. That
is, they compute Cd mod n.

Theorem 40.1. Encrypting and then decrypting in this way results in recover-
ing the original message, that is,

(Me)d ≡n M.

Proof. Since de ≡ 1 (mod (p− 1)(q− 1)), there exists some integer k such that

de = 1 + k(p− 1)(q − 1).

Also, by Fermat’s Little Theorem, if p ∤ M , we have

Mp−1 ≡p 1,

so

(Me)d = M1+k(p−1)(q−1) = M · (Mp−1)k(q−1) ≡p M · 1k(q−1) = M.

Likewise, by a similar argument (Me)d ≡q M . Now, M is obviously a solution
to the system of equations x ≡p M , x ≡q M ; but since p and q are primes
and hence share no common factors, by the Chinese Remainder Theorem we
know that the solution to these equations is unique modulo pq = n. Hence
(Me)d ≡n M .

100

40.4 Digital signatures

There is still a problem with this scheme. Under a symmetric cipher, where
sender and receiver share a secret key, when the receiver gets a message en-
crypted using the secret key they can be sure it came from the sender (unless
someone has stolen the secret key). However, in a public key system, anyone in
the world can encrypt a message to the receiver, so they have no way of knowing
who the message is actually from. There is no a priori reason to trust who the
message says it is from, because anyone can write a message that says “Hi, this
is Alice” whether or not they are actually Alice.

However, this problem can be solved very elegantly by noticing that the
operations of encryption and decryption are symmetric, that is, (Me)d = (Md)e.
That is, a private key can actually be used to encrypt a message, and then the
corresponding public key will work to decrypt it. So, suppose A wants to send
a secure message to B, and they also want B to be able to verify that the
message actually came from them. Instead of directly encrypting the message
for B, first A encrypts the message using A’s private key. This is known as a
digital signature. Then, A takes the resulting signed message and encrypts it
using B’s public key as usual. When B receives the encrypted message, they
first decrypt it using their private key as usual. The result will not be readable
since it has been encrypted using A’s private key. But B can now recover the
original message by decrypting using A’s public key, which will undo the effects
of encrypting with A’s private key. B can now be sure the message came from
A, because the only way to make a message that can be successfully decrypted
using A’s public key would be to use A’s private key; and the only person who
can do that (assuming A’s private key is secret) is A.

101

41 Principles of combinatorics: the product rule
(Friday 25 April)

Combinatorics is the area of mathematics about counting, that is, determining
the sizes of sets. This sounds like it would be trivial or uninteresting, but it
turns out to be deep and fascinating, with many connections to other areas of
mathematics.

You may have memorized a few combinatorics formulas in high school (per-
mutations, combinations, . . .) but we are going to learn some basic underlying
principles—if you understand the principles involved then you can easily re-
derive the formulas as needed.

41.1 The product rule

The first principle we will consider is the product rule. Note, instead of just
talking about the sizes of sets we will often talk in terms of choosing elements
of a set. The number of elements in a set is the same as the number of ways to
choose a different element of the set, so in some sense this makes no difference;
but for some reason it is often helpful to think in terms of actively choosing
elements rather than just passively counting them.

Suppose choosing an item can be decomposed into two independent
choices, with c1 ways to make the first choice, and c2 ways to make the
second choice. Then the total number of ways to choose overall is the
product c1 × c2.

Here, independent means that you have the same set of options for both
choices no matter what you pick. In other words, choosing a certain option for
one of the choices cannot affect which options are available for the other choice.

We can visualize the situation by drawing a rectangular grid, where each row
corresponds to one option for the first choice, and each column corresponds to
an option for the second choice. Then each grid square corresponds to a unique
combination of choices. The fact that the choices are independent corresponds
to the fact that the picture is perfectly rectangular.

c2

c1

102

This really boils down to the fact, which we saw before when learning about
sets, that

|A×B| = |A| × |B|.

Example. There are three kinds of cereal and seven kinds of fruit. For breakfast,
you must choose one cereal and one fruit. How many breakfast choices do you
have?

The product rule clearly applies here: the answer is 3× 7 = 21 choices.

Example. This is a non-example. Suppose we have the same scenario as the
previous problem, except that when you choose oatmeal, you are limited to
having only strawberries or blueberries.

In this case the product rule does not apply (at least not directly) since the
choices are no longer independent.

Example. How many 3-letter strings are there using the letters A–Z? Examples
of such strings include AAA, HDX, CAR, and so on.

The number of two-letter strings is 26× 26 since there are two independent
choices: which letter to choose as the first letter, and which to choose as the
second. Then the number of 3-letter strings is the number of ways to pick a
two-letter string, times the number of ways to pick a third letter, for a total of
(26× 26)× 26 = 263 = 17576.

Similarly, there are 264 four-letter strings, 265 five-letter strings, and in gen-
eral there are 26k k-letter strings. This reasoning shows that we can generalize
the product rule to a product of n choices instead of just two. If we have n
independent choices to make, we just multiply all of them to compute the total
number of choices.

Example. How many subsets are there of an n-element set?
We can use the product rule to answer this question too, though it is less

immediately obvious how it applies. When choosing a subset, for each of the
n elements we have two choices: whether to include it in the subset or not.
All these choices are independent, because each element is allowed to be in
the subset or not, regardless of which other elements are or not members of the
subset. Hence, by the product rule, the total number of choices is 2×2×· · ·×2 =
2n.

If we identify each subset with a bit string of length n indicating which el-
ements are in the subset and which are out, we can see a connection to the
previous example: there are 2n bit strings of length n, since we can indepen-
dently choose each bit to be either 0 or 1.

Example. Suppose we have 10 cans of soup (all different) and we want to eat
them all, one per day over the next 10 days. In how many ways could we do
this? Note this is equivalent to asking how many ways we could order the cans
of soup; imagine we first put them in a particular order and then each day just
eat the next can in the line.

We might at first think the answer is 1010, since there are 10 days and 10
choices of soup on each day. However, the choices are not independent: once
I choose a particular can of soup I can’t choose it again on a subsequent day.

103

(1010 is the answer to the related problem of how many soup-eating schedules
we can make, if each day we go to the store to buy some soup, and the store
carries 10 different kinds. Assuming the store has enough stock, the choices are
now independent, since getting a particular soup on one day does not prevent
us from picking the same soup again another day.)

However, we can conceive of this problem in terms of independent choices if
we change our point of view a little bit. On the first day, I have 10 choices. On
the second day, I can no longer choose the soup I ate on the first day, but I can
freely choose any soup I want out of the 9 that are left. On the third day, I can
choose any of the 8 that remain, and so on. In total, then, I have

10 · 9 · 8 · · · · · 1 = 10! = 3628800

ways to do this.
More generally, there are n(n− 1)(n− 2) · · · 1 = n! ways to put n things in

a particular order, that is, there are n! permutations of n things.

Example. What if I have 10 different cans of soup, as in the previous scenario,
but now I only want to eat soup for the next four days?

As before, I have 10 choices on the first day, 9 choices on the second day,
and so on, for a total of

10 · 9 · 8 · 7 = 5040

ways. Note this can also be written as

10 · 9 · 8 · 7 =
10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

6 · 5 · 4 · 3 · 2 · 1
=

10!

6!
.

In general, if I have n things and want to pick out k of them in a particular
order, I have

n · (n− 1) · · · · · (n− k + 1) =
n!

(n− k)!

ways to do it.

Example. Given finite sets A and B, how many functions f : A→ B are there?
Consider how we might go about choosing a particular function f : A→ B.

A function from A to B must specify a particular element of B for each element
of A. So for the first element a1 ∈ A, we can choose any element b ∈ B to
which f should send a1. Likewise, for a2 ∈ A, we can independently choose
any element of B to which f should send a2, and so on for every element of A.
(These choices are all independent because for any old function, we don’t care
if it sends multiple ai to the same b, or misses some b’s, or whatever.) So for
each element of a, we get to make an independent choice of size |B|; hence, by
the product rule, the total number of ways we could choose a function is

|B| × |B| × · · · × |B|︸ ︷︷ ︸
|A|

= |B||A|.

104

42 Principles of combinatorics: addition and sub-
traction rules, PIE (Monday 28 April)

Suppose choosing something means either making one choice in c1
ways or making another choice in c2 ways, and the choices do not
overlap at all. Then the total number of choices is c1 + c2.

In other words, when A and B are disjoint,

|A ∪B| = |A|+ |B|.

Example. You want to order a single item for lunch. Restaurant A has 13 things
on its menu, and Restaurant B has 24 on its menu. How many different choices
do you have for lunch, if the two restuarants have completely different menus?

Assuming the restaurant menus do not overlap at all, the answer is simply
13 + 24 = 37.

(What if the menus do overlap? We will come back to this question.)

Example. Counting the number of binary trees with a certain number of branch
nodes provides a great example putting together many things we have seen so
far (the product and sum rules, and recursively defined sets and functions).

Here are all the binary trees with zero, one, two, and three branch nodes:

We can see that there are five different binary trees with three branch nodes.
How many will there be with four branch nodes? We are quickly approaching
the limit of what we will be able to count while being confident that we have
not missed any.

Consider the set of five trees with three branch nodes shown above. Of
course, every tree has one branch node at its root; then we have two more
branch nodes that we have to put somewhere. We can break the trees into
three subsets, depending on how many branch nodes we put to the left and
right of the root:

The trees on the left have two branch nodes on the left side of the root and none
on the right; the tree in the middle has one branch node on either side; and the

105

trees on the right have none on the left and two on the right. It’s clear that
these are the only possibilities, and every tree has to fall into exactly one of these
categories. If we put two branch nodes on the left, we have two ways to do it
(since there are two different trees with two branch nodes), and only one way to
put zero on the right (there is only one tree with zero branch nodes). Similarly,
we have one way to make a tree with one branch node to either side, and two
ways to put two on the right. In general, we can compute the number of ways
we have to make a tree with j nodes on the left and k nodes on the right using
the product rule: since the left and right trees can be chosen independently, it
is just the number of trees with j branch nodes times the number of trees with
k branch nodes.

Put together, this tells us that if T (n) represents the number of binary trees
with n branch nodes, then

T (3) = T (2)T (0) + T (1)T (1) + T (0)T (2).

And sure enough, T (0) = T (1) = 1 and T (2) = 2, so this equals

2 · 1 + 1 · 1 + 1 · 2 = 5,

as it should.
Using the same pattern we can compute the number of binary trees with

four branch nodes:

T (4) = T (3)T (0) + T (2)T (1) + T (1)T (2) + T (0)T (3) = 5 + 2 + 2 + 5 = 14.

In general, we can define T (n) recursively as

T (0) = 1

T (n) =

n−1∑
k=0

T (n− k − 1)T (k)

The resulting sequence of numbers, known as the Catalan numbers, is extremely
famous:

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

42.1 Subtraction rule

If choosing something means making one choice in c1 ways OR an-
other in c2 ways, but the choices overlap, the total number of choices
is c1 + c2 − (the number of choices in common).

106

Another way to write this, which we have seen before, is

|A ∪B| = |A|+ |B| − |A ∩B|.

Example. You again want to order a single item for lunch; restaurant A has 13
things on its menu, and Restaurant B has 24 on its menu. However, there are
9 items which the two restaurants have in common. How many items can you
order for your lunch?

Adding 13 + 24 gives the total number of items on both menus, but it has
counted the shared items twice. Subtracting the number of shared items gives
the correct total: 13 + 24− 9 = 28.

Example. How many strings of 8 bits either start with a 1 or end with 00?

• There are 27 strings of 8 bits that start with a 1: the first bit is fixed, and
we can independently choose each remaining bit to be 0 or 1.

• Similarly, there are 26 strings of 8 bits that end with 00.

• We cannot simply add these numbers, because of overlap: there are some
strings of bits that both start with 1 and end with 00. In fact there are 25

such strings, since three bits are fixed and we can freely choose the other
5. Thus, the total number of bit strings that start with 1 or end with 00
is

27 + 26 − 25 = 160.

What if we have three (or more) overlapping sets of choices? It is actually
possible to come up with a general formula for this situation, known as the
Principle of Inclusion-Exclusion.

107

43 The division rule and binomial coefficients
(Wednesday 30 April)

Recall the problem with soup, where we have a bunch of different kinds of soup
and are trying to count the number of different schedules we could make for
ourselves. For example, if we have 10 different kinds of soup and want to eat
soup for 4 days, there are 10 · 9 · 8 · 7 different soup schedules we can make.

Now consider a slightly different question: in how many ways can we choose
which four soups to eat, if we don’t care about the order? In this case 10 ·9 ·8 ·7
is clearly too big, since there are many different schedules which have the same
four soups in different orders.

Suppose we have n total choices, but we really want to think of some
of them as being equivalent. If the choices always come in groups
of exactly k choices which are all equivalent, then the number of
“really different” choices is n/k.

Put another way: if |A| = n and A is the union of pairwise disjoint subsets,
each with size k, then the number of subsets is n/k. We can also think about
this in terms of a picture similar to the picture for the product rule.

k

n/k

In this scenario, each square represents a choice, and we know there are n total
squares in the entire grid. However, each row represents choices which we want
to consider “the same” somehow. If we know there are exactly k squares in each
row, we can conclude that there are n/k rows.

Example. How many ways are there to seat 5 people around a table, if we only
care about who is sitting to the left and right of who, and not about the specific
seats they are in?

One way to answer this question is by first considering that there are 5! ways
to assign each person to a specific seat. However, given a specific assignment of
each person to a seat, if we have everyone stand up and move one seat to the
right, we get a different seat assignment, but as a seating arrangement it should
be considered the same, since we only care who is sitting next to who. In fact,
for every specific seating arrangement there are four other arrangements which
are equivalent, for a total of five equivalent arrangements (corresponding to the

108

five possible rotations around the table). Thus, by the division rule, there are
5!/5 = 24 different seating arrangements.

Note we can also see this by first insisting that person A must always sit in
a specific chair; since specific chairs don’t matter, they might as well. Then we
have four choices for who to seat the right of person A, then three choices for
who to seat to the right of them, and so on, for a total of 4! choices.

Example. How many ways can we choose 4 out of 10 soups?
We know there are 10·9·8·7 ways to choose a schedule of four different soups

in a specific order. But we want to consider two schedules the same when they
use the same four soups, regardless of the order. Given a particular schedule,
how many are equivalent to it? This is just the number of ways to put four
items in a specific order, which we know is 4!. Hence, by the division rule, the
number of ways to choose four out of ten soups is

10 · 9 · 8 · 7
4 · 3 · 2 · 1

= 210.

43.1 Binomial coefficients

More generally, if we want to choose k things out of n—that is, we want to
count the number of size-k subsets of a set of size n—we first of all have

n · (n− 1) · · · · · (n− k + 1) =
n!

(n− k)!

ways to choose k things in a specific order. But rearranging the k things into a
different order is not supposed to make any difference, so for each different subset
of k things there are k! orderings which should all be considered equivalent.
Thus, by the division rule, there are

n!

k!(n− k)!
=

(
n

k

)
size-k subsets of a set of size n. The notation

(
n
k

)
is called a binomial coefficient,

and we pronounce it “n choose k”. There is a special notation for them because
they show up all over the place in mathematics (not just in combinatorics).

Example. How many 8-bit binary strings are there with exactly three 1’s and
five 0’s?

This is equivalent to picking three out of the eight bit positions to set to 1,
so it is

(
8
3

)
= 8!

3!5! =
8·7·6
3·2·1 = 56.

Example. How many 8-bit binary strings have at least 3 bits set to 1?
It is easiest to compute this by subtracting the strings we don’t want to

count from the total:

28 −
(
8

2

)
−
(
8

1

)
−
(
8

0

)
= 256− 28− 8− 1 = 219.

109

44 Binomial coefficients (Friday 2 May)

Here is a table of the first few binomial coefficients, with n along the left side,
and k along the top.

0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1

(The blank entries are 0, since they represent clearly impossible things like
“the number of ways to pick 4 things out of a set of size 2”.) This is called
Pascal’s Triangle and is rather well-known (you may very well have seen it
before). Some properties of binomial coefficients:

•
(
n
0

)
=
(
n
n

)
= 1. We can prove this either by looking at the formula

(n!
0!n! = 1) or by thinking about what it means combinatorially: there is

exactly one way to choose nothing, or everything, from a set of size n.

•
(
n
1

)
= n. Again, we can see this from the formula, or by reasoning that if

we want to pick exactly one thing out of a set of size n, we have n ways
to do it, one for each element.

•
(
n
k

)
=
(

n
n−k

)
. In the formula, k! and (n − k)! just switch places; combi-

natorially, we have the same number of ways to choose k things as we do
to choose which n− k things we are not going to choose. In other words,
instead of thinking in terms of “choosing k things” we can think of it in
terms of “splitting a set of size n into two subsets of sizes k and n− k”.

•
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
. This is the rule for constructing Pascal’s Triangle:

each entry is the sum of the entry above it and the one above and to the
left. I leave it as a challenge for you to prove this either from the formula
or by thinking about it combinatorially.

•
∑n

k=0

(
n
k

)
= 2n. These are just two different ways to count all the subsets

of a set of size n.

45 Introduction to graphs

Motivation: Königsberg Bridge problem. Is it possible to take a walk and
cross all bridges exactly once? 1736—Leonhard Euler solved the problem and
invented graph theory along the way. Insight: physical geography of the town
doesn’t really matter. Only thing that matters is which land areas are connected
to others (by bridges). Graph theory is all about modelling connections or
relationships between things.

110

Note, by “graph” we don’t mean the kind of thing where you make a picture
of some y = f(x). Here’s what we do mean:

Definition 45.1. A graph G = (V,E) is a set of vertices V (aka nodes) and a
set of edges E. Each edge connects two vertices, called its endpoints.

Draw example graph of cities connected by plane routes. Note that how
we draw it doesn’t matter: the only thing that matters is which things are
connected by edges.

What are some variants of the idea of a graph? We’ve given one specific
definition above, but actually there are lots of slight variants depending on
what we’re trying to model.

• Sometimes we want to allow multiple distinct edges between the same
pair of vertices (e.g. multiple different flights between the same citires);
sometimes we don’t (e.g. whether two people are friends on a social media
platform; you can’t be friends with someone twice)

• Sometimes we allow “self-loops”, i.e. edges from a vertex to itself

• Sometimes edges have a particular direction (directed graph), and some-
times they don’t (undirected graph)

• Sometimes edges are labelled with some kind of cost/weight.

Brainstorm some examples!

Definition 45.2. u, v ∈ V are adjacent (aka neighbors) if they are the endpoints
of an edge.

Definition 45.3. The degree of a vertex v ∈ V , written deg(v), is the number
of edges adjacent to v. (Loops count twice.)

Remark. A degree-0 vertex connects to no edges. This is perfectly fine.

46 Vertex degrees and Eulerian paths

Look at some example undirected, unweighted graphs (empty graph; single
vertex; disconnected graph; complete graph; Königsberg graph . . .). Add up
vertex degrees of each. Try to get students to make conjecture.

Lemma 46.1 (Handshake Lemma). In any undirected graph, the sum of all
vertex degrees is twice the number of edges.

Proof. Each edge contributes 2 to the sum.

Aside: how many edges are in a complete graph with n vertices and all
possible edges? Three different ways to answer the same questions:

1. n(n− 1) is the sum of all degrees, since each of the n vertices has degree
n− 1. By the Handshake Lemma, the number of edges is thus n(n− 1)/2.

111

2. Each edge corresponds to a pair of vertices and vice versa. Hence the
number of ways to choose an edge is the number of ways to choose a pair
of vertices:

(
n
2

)
.

3. The first vertex has n− 1 edges adjacent to it; the second vertex then has
n − 2 edges that we haven’t already counted; the third vertex has n − 3
edges that we haven’t already counted; and so on. Thus the total number
of edges is 1 + 2 + 3 + · · ·+ n.

Incidentally, this constitutes a proof that

1 + 2 + 3 + · · ·+ n =

(
n

2

)
= n(n− 1)/2.

They are all equal since they are all different ways of counting the same thing.
Now back to the Königsberg Bridge problem.

Definition 46.2. An Eulerian path is a path which visits every edge exactly
once.

Any vertex with an odd degree must be either the start or end of an Eulerian
path, since every time we visit a vertex in the middle of a path, it uses up 2
edges, and eventually an odd-degree vertex will be reduced to 1 edge.

Hence any graph with more that 2 odd-degree vertices does not have an
Eulerian path. This is what Euler proved. Next time we will consider the
converse.

47 Hierholzer’s Algorithm

Start with some example graphs, see if it’s always possible to create an Eulerian
path if there are not too many odd vertices. Last example: use really big
complicated graph.

Theorem 47.1 (Carl Hierholzer, 1871). If a connected graph has at most two
odd-degree vertices, then it has an Eulerian path.

Definition 47.2. An Eulerian circuit is an Eulerian path that begins and ends
at the same vertex.

This seems to make things harder but it actually makes things easier for us.

Theorem 47.3 (Euler + Hierholzer). A connected graph has an Eulerian circuit
if and only if all vertices have even degrees.

If we have a graph with two odd-degree vertices, just add an edge between
them! Then all vertices will have even degree; use the above theorem to find an
Eulerian circuit, and finally delete that one added edge to obtain an Eulerian
path in the original graph.

112

Proof. (→) Already proved.
(←) Proof by algorithm (Hierholzer’s Algorithm). Let G be an undirected,

connected graph, and suppose all vertices of G have even degree. By induction
on the number of edges of G.

• Base case: G has 0 edges. Then G consists of a single vertex (or no
vertices), which does have an Eulerian circuit (just stay where you are
and visit all edges).

• Now let k ∈ N and suppose that any connected graph with ≤ k edges
and all even degree vertices has an Eulerian circuit. We must show it also
holds for k + 1 edges.

So let G be a connected graph with k + 1 edges and suppose all vertices
of G have even degree.

Pick any vertex of G and start walking (i.e. following edges) but never
repeat an edge. Claim: you will eventually get stuck back at the same
vertex where you started. This is because every vertex has even degree,
and we always use up two edges when going through any vertex—so every
time we get to a vertex there will always be at least one edge remaining
along which we can leave the vertex. The only exception is the starting
vertex where we used one edge when leaving it for the first time.

This will thus generate a circuit C, though it may not include every edge
in the graph. If we delete all edges of C from the graph, we will be left
with some (possibly disconnected) pieces. Each piece is connected, has
≤ k edges, and all vertices still have an even degree (since deleting the
edges of a circuit means we delete an even number of edges from each
vertex). Thus by the induction hypothesis, each piece has an Eulerian
circuit. Now just “splice” the Eulerian circuit for each piece into C at
some point where they share a vertex. This results in an Eulerian circuit
for the entire graph.

Remark. Implementing this efficiently is actually nontrivial but it can be done
in O(n) time.

Do example.

48 Bonus material: recursive/inductive defini-
tions

S’23: Didn’t cover this material this year. We’ve been writing recursive func-
tions in Disco all along.

113

48.1 Recursively defined functions

We can define functions using recursion/induction (we have seen this briefly
before, when discussing sequences).

• Base case: define the function on some initial value(s).

• Inductive/recursive step: define the function on other values in terms of
its output for previous values.

Example. Let f : N→ N be the function defined by

f(0) = 3

f(n+ 1) = 2f(n) + 3

We claim that this is a valid definition that uniquely defines the function on
all possible input values n ∈ N. Why is that? By induction: the first equation
shows f is defined for 0; and the second equation shows that whenever it is
defined for n, then it is defined for n+1 as well. Thus by induction it is defined
for all n ∈ N.

We can list a few values of the function:

f(0) = 3

f(1) = 2f(0) + 3 = 9

f(2) = 2f(1) + 3 = 21

Remark. I am using the words “recursion” and “induction” interchangeably to
emphasize the very deep connection between the two concepts. Typically we use
the word “recursion” when we are talking about computation and “induction”
when we are talking about proof, but in a very deep sense the two are the
same thing. In fact, we can think of an “inductive proof” of ∀n. P (n) as a
recursive function that takes a number n as input and outputs a proof of the
proposition P (n); using the induction hypothesis in the proof corresponds to
using the function recursively. (In fact, there are computer proof systems that
work in exactly this way; if you want to learn more about them, take CSCI 365,
Functional Programming!)

Example. Let F : N → N be the function such that F (n) is the nth Fibonacci
number. (We can think of this either as a function or a sequence: a sequence is
“really” just a function with a domain of N.) Then F is defined by

F (0) = 0

F (1) = 1

F (n+ 2) = F (n+ 1) + F (n)

Given a recursively defined function, how do we prove things about it? Using
induction, of course! In fact, we’ve seen examples of this already, for example,
when proving some facts about the Fibonacci numbers.

Challenge: prove that ∀n ∈ N. f(n) = 3 · (2n+1 − 1).

114

48.2 Recursively defined sets

We can also define sets using recursion/induction.

• Base case(s): specify one or more elements in the set.

• Inductive step(s): give some rules saying how to construct new elements
of the set from existing elements in the set.

Example. Let Σ be a finite set of symbols (the “alphabet”). For example, Σ
could be the set of English letters {A,B,C, . . . , Z}, or it could be the set of
base-ten digits {0, . . . , 9}, or the set of bits {0, 1}.

We then define the set of strings over the alphabet Σ, written Σ∗, as follows:

• λ ∈ Σ∗ (λ represents the empty string)

• If w ∈ Σ∗ and x ∈ Σ, then wx ∈ Σ∗.

The rule says that if w is any string in Σ∗, then we can always add one more
element from the alphabet Σ to the end of w, resulting in a new (longer) string
which is also in Σ∗.

For example, suppose Σ = {a, b, c}. Let Σ∗
i be the set we get after applying

the recursive rule i times. Then we have:

Σ∗
0 = {λ}

Σ∗
1 = {λ, λa, λb, λc} = {λ, a, b, c}

Σ∗
2 = {λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc}

Σ∗ is what we get if we can apply the rule as many times as we want, that is,

Σ∗ =

∞⋃
n=0

Σ∗
n.

Σ∗ contains things like abaccccabca, bbb, or a million a’s followed by a single c.

Example. We can recursively define a set F of formulas of propositional logic
as follows.

• T ∈ F , F ∈ F , and x, y, z, · · · ∈ F where x, y, z, . . . are the possible
variables we can use.

• If p, q ∈ F , then

– ¬p ∈ F
– p ∧ q ∈ F
– p ∨ q ∈ F
– p→ q ∈ F
– p↔ q ∈ F

115

Thus, F0 = {T,F, x, y, z, . . . } is just the set of base cases (the so-called
“atomic” formulas). F1 contains F0 plus everything we can get by one applica-
tion of the recursive rule:

F1 = {T,F, x, . . . ,¬x,T ∧ y, z → F, x↔ y, . . . }

F2 in turn contains everything in F1 plus all the things we can get by applying
a rule to two things in F1, for example:

F2 = {. . . , (¬x)→ (T ∧ y), y ∧ (z → F), . . . }

And so on. In this way we get F as the set of all possible formulas built out of
T, F, variables, ¬, ∧, ∨, →, and ↔.

Example. We can define the set of binary trees B as follows:

• □ ∈ B (□ represents the “empty tree”)

• If t1, t2 ∈ B then also t2t1 ∈ B (this is a “branch node” with
two “children”).

For example, various trees in the set B are drawn below:

Note, it is easy to see that every tree will always have empty trees (the little
squares) hanging off everywhere on the bottom, so we don’t really have to draw
them. From now on, we will draw trees without showing the empty tree nodes
(they are still there, just not drawn). For example, the trees from above can be
drawn like this:

Challenge: how many trees are there with 0 branches? With 1? 2? 3? 4?
5?

49 Bonus material: structural induction

Let S be a recursively defined set, and suppose we wanted to prove something
about all elements of S. That is, for some predicate P , we wish to prove

∀s ∈ S. P (s).

116

How would we do it? Induction seems like an obvious choice, but actually it
doesn’t quite match up: induction, as we’ve defined it, lets us prove things about
all natural numbers, but in this scenario we want to instead prove something
about all elements of S.

One way we could do it is by induction on the number of times we have
applied the recursive rules for building S. In other words, if S0 contains the
base elements, S1 is the result of applying the recursive rule(s) to S0 once, S2

is the result of applying the rules again, and so on, then we could prove the
statement

∀n ∈ N. ∀s ∈ Sn. P (s)

by induction. However, there is a much more straightforward way that more
closely matches the way S was defined in the first place, which is the principle
of structural induction.

To prove ∀s ∈ S. P (s):

• Prove P holds for all the elements of S specified as base case(s).

• For each rule used to build new elements of S, show that if P holds for
elements which are already in S, then P also holds for the elements newly
constructed by the rule.

Example. Given a binary tree t ∈ B, let e(t) be the number of empty trees (□)
contained in t, and b(t) the number of branch nodes (•).

Theorem 49.1. For every t ∈ B, there is one more empty node than branch
node, that is,

e(t) = 1 + b(t).

Proof. By structural induction.

• First, we must show that the property holds for the empty tree. And
indeed,

e(□) = 1 = 1 + b(□).

• Let t1, t2 ∈ B and suppose as our induction hypothesis that the property
holds for them, that is e(t1) = 1 + b(t1) and e(t2) = 1 + b(t2). Then we
must show that the property holds also for the new tree with a branch
having t1 and t2 as its children, call it t.

The number of empty trees in t is just the sum of the number of empty
trees in t1 and t2, e(t) = e(t1) + e(t2). The number of branch nodes, on
the other hand, is one more than the sum of the number in t1 and t2,
because constructing t adds one new branch node: b(t) = 1+ b(t1)+ b(t2).
Putting these facts together:

e(t)
= { observation above }

e(t1) + e(t2)

117

= { IH }
1 + b(t1) + 1 + b(t2)

= { algebra }
1 + (1 + b(t1) + b(t2))

= { observation above }
1 + b(t)

Thus, by structural induction, this property holds for every tree in B.

Example. Let’s define sets of propositional logic formulas similarly to the ex-
ample from before, but somewhat simplified for the purposes of this example.
First of all, we define F by:

• T,F, x, y, z, · · · ∈ F .

• If p ∈ F , then ¬p ∈ F .

• If p, q ∈ F , then p ∧ q ∈ F , and p ∨ q ∈ F .

So, for example, F contains things like T ∧ ¬x, or ¬(x ∧ ¬(y ∨ ¬z)). Now let’s
define G, which is similar but not quite the same:

• T,F, x, y, z, . . . ,¬x,¬y,¬z, · · · ∈ G.

• If p, q ∈ G, then p ∧ q ∈ G, and p ∨ q ∈ G.

So G contains negated variables like ¬x, but it does not have formulas containing
¬ anywhere else. So certain things in F are also in G, such as T∧¬x. But there
are some formulas in F which are not in G, such as ¬(x∧¬(y ∨¬z)). However,
consider this example:

¬(x ∧ ¬(y ∨ ¬z))
≡ { de Morgan }
¬x ∨ ¬¬(y ∨ ¬z)

≡ { double negation }
¬x ∨ y ∨ ¬z

So in this case we are able to transform the original formula, which was not in
G, into a logically equivalent one which is in G. Can we always do this? Let’s
try to prove it.

Theorem 49.2. For all p ∈ F , there exists some q ∈ G such that p ≡ q.

Proof attempt. By structural induction on F .

• The base elements specified to be in F are T, F, and variables. Each of
these is in G as well.

118

• Now suppose that p ∈ F and there is some q ∈ G such that p ≡ q; we must
show this is also true for ¬p. But here we are kind of stuck. Knowing
that there is something equivalent to p in G doesn’t really help us find
something in G equivalent to ¬p.

Although it seems counterintuitive, in many cases when getting stuck on an
inductive proof, the solution is to prove a stronger theorem. This is counterin-
tuitive because it seems like proving a stronger theorem would be even harder.
But the strength cuts both ways: when proving a stronger theorem we also get
to assume a stronger induction hypothesis. The trick is to find the right balance.

In this case, we can actually prove the stronger theorem:

Theorem 49.3. For all p ∈ F , there exists some q ∈ G such that p ≡ q, and
some r ∈ G such that ¬p ≡ r.

Proof. By structural induction on F .

• The base elements specified to be in F are T, F, and variables. Each of
these is in G as well, so G contains things equivalent to them. What about
their negations? Well, ¬T ≡ F, and ¬F ≡ T, and G explicitly contains
negated variables ¬x, ¬y, and so on. Hence for all the base elements of F ,
we see that G contains things equivalent to both them and their negations.

• Now suppose that p ∈ F and there exist q, r ∈ G such that p ≡ q and
¬p ≡ r; we must show this is also true for ¬p. By assumption, r is
equivalent to ¬p; also, ¬(¬p) ≡ p ≡ q by assumption. So G contains
things equivalent to both ¬p and its negation.

• Suppose p1, p2 ∈ F and that G contains things equivalent to both p1 and
p2 and their negations—say p1 ≡ q1, ¬p1 ≡ r1, p2 ≡ q2 and ¬p2 ≡ r2.
Let’s show G contains formulas equivalent to both p1 ∧ p2 and ¬(p1 ∧ p2).
p1 ∧ p2 is easy: since q1, q2 ∈ G we know q1 ∧ q2 ∈ G as well, and so
p1 ∧ p2 ≡ q1 ∧ q2 since we assumed p1 ≡ q1 and p2 ≡ q2. What about
¬(p1 ∧ p2)? Well,

¬(p1 ∧ p2) ≡ ¬p1 ∨ ¬p2 ≡ r1 ∨ r2 ∈ G.

• The case for p1 ∨ p2 is very similar to the previous case.

50 Bonus material: partial orders

50.1 Partial orders

Definition 50.1. A partial order is a reflexive, antisymmetric, and transitive
relation.

119

Example. ≤ on Z (or on N, or R, or . . .).
Example. The divisibility relation on N is a partial order.

Example. ⊆ on the power set of a set S.

Example. The relation “must take at the same time as or before” on the set of
classes.

We use such relations a lot! We use transitivity to prove relations by a chain
of steps, and we often use antisymmetry to prove that things are equal. For
example, for sets, we often prove that A = B by proving A ⊆ B and B ⊆ A.
For natural numbers, we can prove a = b by proving a ≤ b and b ≤ a, or a | b
and b | a.

Lemma 50.2. A partial order ≼ can never have a cycle a1 ≼ a2 ≼ . . . ≼ an ≼
a1.

Proof. By transitivity, a1 ≼ an; then, since an ≼ a1, by antisymmetry a1 = an.
A similar argument shows that a1 = a2 = a3 = · · · = an.

We can visualize posets using a Hasse diagram. We draw an edge a → b
when a ≼ b; but if a ≼ b and b ≼ c we don’t bother drawing an edge a→ c since
it is implied by transitivity. Also, since there can never be any cycles, we can
draw all the edges pointing in the same direction (typically, up), so we don’t
actually need to draw arrows on them.

Example. Hasse diagrams for (N,≤), for (N, |), and for (P({1, 2, 3}),⊆).

120

