Discrete Math HW 9: Learning goals N2–N4 (solutions) due Monday, April 28

*N2: I can compute the greatest common divisor of two natural numbers using the Euclidean Algorithm.* 

**Exercise 1** Use the Euclidean Algorithm to compute each of the following. Be sure to show the steps of the process, not just the final result.

- (a) gcd(1,5) = gcd(5,1) = gcd(1,0) = 1
- (b) gcd(123,277) = gcd(277,123) = gcd(123,31) = gcd(31,30) = gcd(30,1) = gcd(1,0) = 1
- (c) gcd(78,104) = gcd(104,78) = gcd(78,26) = gcd(26,0) = 26

**Exercise 2** Write a Disco function to find the GCD of two natural numbers using the Euclidean algorithm.

gcd :  $(N * N) \rightarrow N$ gcd(a,0) = a gcd(a,b) = gcd(b, a mod b) gcd(518303142726377580,169429189188136020) = 8580

*N3: I can compute Bézout coefficients and modular inverses using the Extended Euclidean Algorithm.* 

**Exercise 3** For each pair of numbers *a* and *b*, compute integers *s* and *t* such that sa + tb = gcd(a, b).

(a) 
$$a = 1, b = 5$$
  
 $s = 1, t = 0$  works!  
(b)  $a = 123, b = 277$   
 $\frac{s \ t \ 123s + 277t \ q}{0 \ 1 \ 277}$   
 $1 \ 0 \ 123 \ 2$   
 $-2 \ 1 \ 31 \ 3$   
 $7 \ -3 \ 30 \ 1$   
 $-9 \ 4 \ 1$ 

Hence  $-9 \cdot 123 + 4 \cdot 277 = 1$ .

(c) 
$$a = 78, b = 104$$

| S  | t  | 78s + 104t | q |
|----|----|------------|---|
| 0  | 1  | 104        |   |
| 1  | 0  | 78         | 1 |
| -1 | 1  | 26         | 3 |
| 4  | -3 | 0          | 1 |

Hence the GCD is gcd(78, 104) = 26, and 104 - 78 = 26.

**Exercise 4** For each *a* and *m* below, either find the multiplicative inverse of *a* modulo *m*, or state that it does not have one.

(a) 
$$a = 7, m = 24$$

7 is its own multiplicative inverse modulo 24:  $7 \cdot 7 = 49 \equiv_{24} 1$ .

- (b) a = 26,  $m = 39 \text{ gcd}(a, m) = 13 \neq 1$ , so *a* does not have a multiplicative inverse modulo 39.
- (c) a = 922,  $m = 77922 \equiv_{77} 75$ , and we can compute its inverse via the extended Euclidean algorithm:

| S   | t  | 77s + 75t | q  |
|-----|----|-----------|----|
| 1   | 0  | 77        |    |
| 0   | 1  | 75        | 1  |
| 1   | -1 | 2         | 37 |
| -37 | 38 | 1         |    |

Hence 38 is the modular inverse of 75  $\equiv_{77}$  922. We can doublecheck that  $922 \cdot 38 = 35036 \equiv_{77} 1$ .

*N4: I can solve modular equivalences in one variable involving addition, subtraction, and multiplication by a constant.* 

**Exercise 5** Solve each of the following equivalences for *x*. Express your answers in the form  $x \equiv_m r$  where  $0 \le r < m$ .

(a)  $34x \equiv_{89} 77$ 

The modular inverse of 34 modulo 89 is 55. Multiplying both sides by 55 thus cancels the 34:

 $34x \equiv_{89} 77$   $\rightarrow \qquad \{ multiply both sides by 55 \}$   $x \equiv_{89} 4235$   $\rightarrow \qquad \{ reduce mod 89 \}$ 

## 

© 2025 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

 $x \equiv_{89} 52$ 

(b)  $5x + 17 \equiv_{23} 2x - 10$ 

```
5x + 17 \equiv_{23} 2x - 10
                                  {
                                       subtract 2x from both sides
                                                                               }
\rightarrow
  3x + 17 \equiv_{23} -10
                                       subtract 17 from both sides }
\rightarrow
                                  {
  3x \equiv_{23} -27
                                       reduce modulo 23 }
\rightarrow
                                  {
  3x \equiv_{23} -4
                                       3 \cdot 8 \equiv_{23} 1 \}
\rightarrow
                                  {
  x \equiv_{23} -32
                                       reduce modulo 23 }
\rightarrow
                                  {
  x \equiv_{23} 14
```

(c)  $200x - 13 \equiv_{1001} 0$ 

 $200x - 13 \equiv_{1001} 0$   $\rightarrow \qquad \{ \text{ add 13 to both sides } \}$   $200x \equiv_{1001} 13$   $\rightarrow \qquad \{ \text{ multiply both sides by } -5, \text{ the modular inverse of } 200 \}$   $x \equiv_{1001} -65$   $\rightarrow \qquad \{ \text{ reduce modulo } 1001 \}$   $x \equiv_{1001} 936$ 

