Discrete Math HW 8: Learning goals N1, N4 (solutions) due Monday, April 21

N1: I can determine whether one integer is divisible by another, and calculate quotients and remainders according to the Division Algorithm.

Exercise 1 Determine which of the following divisibility relationships hold.

- 2 | 90: yes, since $2 \cdot 45 = 90$
- $3 \mid 90$: yes, since $3 \cdot 30 = 90$
- 4 | 90: no, there is no integer k such that 4k = 90
- $5 \mid 10$: yes, $5 \cdot 2 = 10$
- 10 | 5: no, $10k \neq 5$ for any integer k
- $10 \mid -10$: yes, $10 \cdot (-1) = 10$
- $0 \mid 6$: no, $0k \neq 6$ for any integer k
- $6 \mid 0$: yes, $6 \cdot 0 = 0$
- $0 \mid 0$: yes, $0 \cdot 27 = 0$
- 247 | 13585: yes, 247 · 55 = 13585
- $(-2) \mid 4$: yes, $(-2) \cdot 2 = 4$
- $2 \mid (-4)$: yes, $2 \cdot (-2) = 4$
- $(-4) \mid 2$: no, $-4k \neq 2$ for any integer k

Exercise 2 List all the positive integer divisors of 60.

The positive integer divisors of 60 are

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

Exercise 3 Calculate each of the following quotients and remainders.

- $60 \operatorname{div} 12 = 5$
- $60 \mod 12 = 0$

- $60 \operatorname{div} 7 = 8$
- $60 \mod 7 = 4$
- $0 \operatorname{div} 12 = 0$
- $0 \mod 12 = 0$
- $12983 \operatorname{div} 527 = 24$
- $12983 \mod 527 = 335$
- (-25) div 7 = -4
- $(-25) \mod 7 = 3$

N4: I can solve modular equivalences in one variable involving addition, subtraction, and multiplication by a constant.

Exercise 4 Solve each of the following equivalences for *x*. Express your answers in the form $x \equiv_m r$ where $0 \leq r < m$.

1.	$x + 12 \equiv_7 99$		
	\leftrightarrow	{	subtract 12 from both sides }
	$x \equiv_7 87$		
	\leftrightarrow	{	reduce 87 modulo 7 }
	$x \equiv_7 3$		
2.	$27x + 27 \equiv_{13} 2727$		
2.	$\leftrightarrow \qquad \qquad$	{	reduce 27 and 2727 mod 13 }
	$x + 1 \equiv_{13} 10$	t	feddee 2, and 2, 2, mod 10 ,
	$\leftrightarrow \qquad \qquad$	{	subtract 1 from both sides }
	$x \equiv_{13} 9$	t	
	15 -		
	2u = 12 - u + 7		
3.	$2x - 12 \equiv_8 x + 7$	ſ	add 10 to both sides
	\leftrightarrow	{	add 12 to both sides }
	$2x \equiv_8 x + 19$	ſ	
	\leftrightarrow 10	{	subtract <i>x</i> from both sides }
	$x \equiv_8 19$	ſ	
	\leftrightarrow 2	ł	reduce 19 modulo 8 }
	$x \equiv_8 3$		

4. $77x + 15 \equiv_7 5 - 22x$ \leftrightarrow { reduce 77 and 22 modulo 7 } $0x + 15 \equiv_7 5 - x$

© 2025 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

\leftrightarrow	{	subtract 5 from both sides }	
$10 \equiv_7 -x$			
\leftrightarrow	{	multiply both sides by -1 }	
$-10 \equiv_7 x$			
\leftrightarrow	{	symmetry, and reduce $-10 \mod 7$	}
$x \equiv_7 4$			

 $\ensuremath{\mathbb{C}}$ 2025 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.