Discrete Math HW 7: Learning goals Rg, P4 (solu-
tions)
due Friday, April 11

Pg4: I can write the outline of a proof by (weak) induction or strong in-
duction.

Exercise 1 Write the outline of a proof by induction for Vn:IN. P(n).

Proof. We must prove P(0), and Vk:IN. P(k) — P(k+1).
Proof of P(0)
Let k be an arbitrary natural number, and suppose P(k). We must
prove P(k+1).
Proof of P(k + 1), using P(k)

Therefore, since k was arbitrary and we proved P(k+ 1) while as-
suming P(k), therefore Vk:IN. P(k) — P(k+1).

Therefore, by induction, P(n) is true for all natural numbers n. O

Exercise 2 Prove by induction: for all natural numbers 7,

Y jY=n-2mt242
1<j<n+1

Proof. Let Q(n) be the proposition

Q(n) = ( Y j-zf:n.2”+2+2>.

1<j<n+1
We will show Vn:IN. Q(n) by induction.
The base case, Q(0), says

Y j2=0-2"2 42
1<j<1

Both sides are equal to 2, so this is true.
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Now let k be an arbitrary natural number, and suppose Q(k) is true,
that is,
) jo2=k-2242 (KNOW).
1<j<k+1

We will show Q(k + 1), that is,

Yo i 2 =(k+1)-25% 42 (wanT).
1<j<k+2

j- 2J

1<j<k+2

= { pulloutthej=k+2term }
(k+2)-2%2+ 30 j-2

1<j<k+1

— { assumption }
(k+2) 22 4 k.2k2 42

= { factor out 2Kt2 )
((k+2)+k)- 2242

= { algebra }
(2k +2) - 2k2 42

= { algebra }
(k+1)-283 42

O

Rg: I can come up with closed forms for recurrences and prove them via
induction.

Exercise 3 For each recurrence below, list at least the first 5 terms of
the sequence, and come up with a closed form. Then prove the closed
form is correct, using either a proof by induction, or by showing that
the closed form satisfies the recurrence when substituted for a,.

(@) an =a,_1+2;a0=3

The first 5 terms are 3,5,7,9,11. A closed form is a, = 2n + 3.
Let P(n) be the proposition “a, = 2n + 3”; we will prove by
induction that P(n) is true for all natural numbers n.

Proof. In the base case, a9 = 3 by definitoin, and the closed form
yields 2- 0+ 3 = 3 also.
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Let k be an arbitrary natural number, and suppose P(k) is true,
that is, ay = 2k + 3. We will show P(k+1), thatis, ax,1 = 2(k+

1) +3.
Ak+1
= { definition of the recurrence }
ax+2
= { assumption }
2k+3+2
- { algebra |}
2(k+1)+3

Therefore, we have shown for an arbitrary k that P(k) implies
P(k+1).

Therefore, we have proved by induction that P(n) is true for
all natural numbers n, that is, a, = 2n + 3 is a correct closed
form. O

ap = 5ay_1;a0 =1

The first 5 terms are 1,5, 25,125, 625, and a closed form is a,, =
5". We can prove this correct by substituting it into the recur-
rence:

e 50 — 1, 50 this closed form satisfies the base case.

* Substituting a, = 5" into both sides of a, = 5a,_; yields
5" = 5.5"1 which is true.

ap=a, 1+ (2n+1);a0 =0

The first 5 terms are 0, 3,8, 15,24. To find a closed form we can

either

* notice these terms are all one less than a perfect square, and
hence conjecture that a, = (n+1)?> — 1, or

* we can calculate

Y (2k+1):2< Y k>+ Yo 1

1<k<n 1<k<n 1<k<n
n(n+1)
——4n

> +
=n?+2n.

=2
These look different at first glance, but in fact (n + 1) — 1 =
(n?+2n+1) —1=n?+2n.
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If we calculated the answer, a proof by induction is not really
needed, but it’s still a good way to confirm that we didn’t make
a mistake. On the other hand, if we saw a pattern and guessed a
formula, then we need a way to confirm our guess is correct.

We can show that the closed form a, = n? + 2n is correct by

substituting it into the recurrence:

e Forn = 0,49 = 0 by definition, and the closed form yields
02+2-0 =0 also.

* Substituting the closed form into both sides of the recurrence
yields
n4+2n=n-1>*+2n-1)+2n+1);

expanding out the right-hand side and collecting like terms,
we find that

m—172+2n—1)+@2n+1)=n*>—2n+1+2n—-2+2n+1
=n®+2n

so the two sides are equal.

(d) an =2na,_1;a0 =3

The first 5 terms are 3, 6,24, 144, 1152. We can find a closed form
by expanding out the recurrence:

an = 2na, 1
=2n(2(n —D)ay_2) =2%-n-(n—1)-a,
=2.n-(n—1)-(n—2) a,_3

=2"-nl-a

Hence a closed form is a4, = 3 -2" - n!, which we can show by
substituting into the recurrence.

For full credit on this homework assignment, complete either
Exercise 4 or Exercise 5 (or both, of course).

Exercise 4 This exercise concerns the sum

(RS S SR
1.2 23 3.4 n-(n+1)
(a) Write a Disco function fracsum : N -> F which computes the Hint: your function should be recursive.
above sum for a given n. For example, fracsum(2) should output Make sure your function is defined for

every natural number input, including 0.

thesum 1/(1-2)+1/(2-3).
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fracsum : N -> F
fracsum(@) = 0
fracsum(n) = fracsum(n .- 1) + 1/(n (n+1))

Evaluate your function for some example inputs and look for a
pattern. Make a conjecture of the form

Vn : N.fracsum(n) = ....

fracsum(0) = 0

fracsum(l) = 1/2
fracsum(2) = 2/3
fracsum(3) = 3/4

We conjecture that fracsum(n) = n/(n + 1) for all natural num-
bers n.

Use induction to prove your conjecture.

Proof. Let F(n) be the proposition fracsum(n) = n/(n+1). We
will prove Vn:IN. F(n) by induction.

In the base case, F(0) says fracsum(0) = 0/1, which is true, since
fracsum(0) = 0 by definition.

Now let k be an arbitrary natural number, and suppose F(k), that
is, fracsum(k) = k/(k+1). We must show F(k+1), that is, fracsum(k +
1) =(k+1)/(k+2).

fracsum(k + 1)
= { definition }

1
fracsum (k) + (I
= { assumption (induction hypothesis) }

ko1
s G (Y oy

= | algebra
kkt2) 1
(k+1)(k+2) (k+1)(k+2)

= | algebra }
K242k+1

k1) (k+2)

= { oalgebra |}
(k+1)?
(k+1)(k+2)

= { oalgebra }

© 2025 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.


http://creativecommons.org/licenses/by/4.0/

DISCRETE MATH HW 7: LEARNING GOALS R4, P4 (SOLUTIONS)

Exercise 5 This exercise concerns a variant of the Ackermann function
(originally due to R. C. Buck), defined on pairs of natural number
inputs as follows:

2n ifm=0

0 ifm>1landn =0
A(m,n) =

2 ifm>landn=1

Am—1,A(m,n—1)) ifm>1landn >2

(a) Find A(1,0), A(0,1), A(1,1), and A(2,2).

e A(1,0)=0
o A(0,1)=2
o A(1,1)=2
o A(2,2)=A(1,A(2,1)) = A(1,2) = A0, A(1,1)) = A(0,2) = 4

(b) Prove that A(m,2) = 4 for all natural numbers m.

Proof. The proof is by induction.

When m =0, A(0,2) =2 -2 = 4 by definition.

Now let k be an arbitrary natural number, and suppose A(k,2) =
4. We will show that A(k+1,2) = 4 as well.

A(k+1,2)

= { definitionof A }
Ak, A(k, 1))

= { definition of A }
A(k,2)

= { assumption }
4

Therefore, by induction, A(m,2) = 4 for all m. O

(c) Prove that A(1,n) =2" foralln > 1.

Proof. We will prove this by induction.

In the base case, when n = 1, we have A(1,1) = 2 by defini-
tion, and 2 = 21.
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A(Lk+1)

{
A0, A(1,k))

{
A(0,25)
{

{

(d) Find each of the following values.
i) A(23)
A(2,3)

{

A(1,A(2,2))

{

A(1,4)

16

(i) A(3,3)

A(3,3)

A(2,A(3,2)) !
A(2,4) !
A(1,A(2,3)) !

A(1,16)

216
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Now let k > 1 be an arbitrary natural number other than 0, and
suppose the proposition is true for k, that is, A(1,k) = 2X. Then
we must show it is also true for k + 1.

by definition (k+1 > 2 since k > 1) }

}

assumption

}

definition of A

algebra }

You might be able to use Disco to
find some of them; for others, you can
use the above theorems to help you
calculate a result.

definition }
part (b) )

part (0 |

}

definition
part (b))
definition }
part (d)(i) )

part (c) }
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(iii) A(3,4) (Hint: feel free to leave your answer in a convenient
algebraic form rather than expanding it out into its actual
decimal digits.)

First, let 2 11 n denote iterated exponentiation of n copies
of 2, thatis, 2 11 2 = 22,2 11 3 = 22,2 11 4 = 22°, and
so on. We will show that A(2,n) =2t nforalln > 1. In

the base case, A(2,1) = 2 by definition. Then, if we suppose
A(2,k) =211k, then

A(2,k+1)

= { definition }
A(1,A(2,k))

= { assumption }
A(L211K)

- { part(© |

2217k

= { definition of 11 }
291 (k+1)

Now we may compute

A(3,4)

= { definition }
A(2,A(3,3))

= { part (d)G) )
A(2,219)

= { previous lemma }
21121,

a truly gigantic number consisting of 65,536 copies of 2
stacked in a tower of exponents.
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