
Discrete Math HW 7: Learning goals R4, P4 (solu-
tions)
due Friday, April 11

P4: I can write the outline of a proof by (weak) induction or strong in-
duction.

Exercise 1 Write the outline of a proof by induction for ∀n :N. P(n).

Proof. We must prove P(0), and ∀k :N. P(k) → P(k + 1).

Proof of P(0)

Let k be an arbitrary natural number, and suppose P(k). We must
prove P(k + 1).

Proof of P(k + 1), using P(k)

Therefore, since k was arbitrary and we proved P(k+ 1) while as-
suming P(k), therefore ∀k :N. P(k) → P(k + 1).

Therefore, by induction, P(n) is true for all natural numbers n.

Exercise 2 Prove by induction: for all natural numbers n,

∑
1≤j≤n+1

j · 2j = n · 2n+2 + 2.

Proof. Let Q(n) be the proposition

Q(n) ≡
(

∑
1≤j≤n+1

j · 2j = n · 2n+2 + 2

)
.

We will show ∀n :N. Q(n) by induction.

The base case, Q(0), says

∑
1≤j≤1

j · 2j = 0 · 2n+2 + 2.

Both sides are equal to 2, so this is true.
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Now let k be an arbitrary natural number, and suppose Q(k) is true,
that is,

∑
1≤j≤k+1

j · 2j = k · 2k+2 + 2 (know).

We will show Q(k + 1), that is,

∑
1≤j≤k+2

j · 2j = (k + 1) · 2k+3 + 2 (want).

∑
1≤j≤k+2

j · 2j

= { pull out the j = k + 2 term }
(k + 2) · 2k+2 + ∑

1≤j≤k+1
j · 2j

= { assumption }
(k + 2) · 2k+2 + k · 2k+2 + 2

= { factor out 2k+2 }
((k + 2) + k) · 2k+2 + 2

= { algebra }
(2k + 2) · 2k+2 + 2

= { algebra }
(k + 1) · 2k+3 + 2

R4: I can come up with closed forms for recurrences and prove them via
induction.

Exercise 3 For each recurrence below, list at least the first 5 terms of
the sequence, and come up with a closed form. Then prove the closed
form is correct, using either a proof by induction, or by showing that
the closed form satisfies the recurrence when substituted for an.

(a) an = an−1 + 2; a0 = 3

The first 5 terms are 3, 5, 7, 9, 11. A closed form is an = 2n + 3.
Let P(n) be the proposition “an = 2n + 3”; we will prove by
induction that P(n) is true for all natural numbers n.

Proof. In the base case, a0 = 3 by definitoin, and the closed form
yields 2 · 0 + 3 = 3 also.
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Let k be an arbitrary natural number, and suppose P(k) is true,
that is, ak = 2k+ 3. We will show P(k+ 1), that is, ak+1 = 2(k+
1) + 3.

ak+1

= { definition of the recurrence }
ak + 2

= { assumption }
2k + 3 + 2

= { algebra }
2(k + 1) + 3

Therefore, we have shown for an arbitrary k that P(k) implies
P(k + 1).

Therefore, we have proved by induction that P(n) is true for
all natural numbers n, that is, an = 2n + 3 is a correct closed
form.

(b) an = 5an−1; a0 = 1

The first 5 terms are 1, 5, 25, 125, 625, and a closed form is an =

5n. We can prove this correct by substituting it into the recur-
rence:

• 50 = 1, so this closed form satisfies the base case.

• Substituting an = 5n into both sides of an = 5an−1 yields
5n = 5 · 5n−1, which is true.

(c) an = an−1 + (2n + 1); a0 = 0

The first 5 terms are 0, 3, 8, 15, 24. To find a closed form we can
either

• notice these terms are all one less than a perfect square, and
hence conjecture that an = (n + 1)2 − 1, or

• we can calculate

∑
1≤k≤n

(2k + 1) = 2

(
∑

1≤k≤n
k

)
+ ∑

1≤k≤n
1

= 2
n(n + 1)

2
+ n

= n2 + 2n.

These look different at first glance, but in fact (n + 1)2 − 1 =

(n2 + 2n + 1)− 1 = n2 + 2n.
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If we calculated the answer, a proof by induction is not really
needed, but it’s still a good way to confirm that we didn’t make
a mistake. On the other hand, if we saw a pattern and guessed a
formula, then we need a way to confirm our guess is correct.

We can show that the closed form an = n2 + 2n is correct by
substituting it into the recurrence:

• For n = 0, a0 = 0 by definition, and the closed form yields
02 + 2 · 0 = 0 also.

• Substituting the closed form into both sides of the recurrence
yields

n2 + 2n = (n − 1)2 + 2(n − 1) + (2n + 1);

expanding out the right-hand side and collecting like terms,
we find that

(n − 1)2 + 2(n − 1) + (2n + 1) = n2 − 2n + 1 + 2n − 2 + 2n + 1

= n2 + 2n

so the two sides are equal.

(d) an = 2nan−1; a0 = 3

The first 5 terms are 3, 6, 24, 144, 1152. We can find a closed form
by expanding out the recurrence:

an = 2nan−1

= 2n(2(n − 1)an−2) = 22 · n · (n − 1) · an−2

= 23 · n · (n − 1) · (n − 2) · an−3

= . . .

= 2n · n! · a0

Hence a closed form is an = 3 · 2n · n!, which we can show by
substituting into the recurrence.

For full credit on this homework assignment, complete either
Exercise 4 or Exercise 5 (or both, of course).

Exercise 4 This exercise concerns the sum

1
1 · 2

+
1

2 · 3
+

1
3 · 4

+ · · ·+ 1
n · (n + 1)

.

(a) Write a Disco function fracsum : N -> F which computes the Hint: your function should be recursive.
Make sure your function is defined for
every natural number input, including 0.

above sum for a given n. For example, fracsum(2) should output
the sum 1/(1 · 2) + 1/(2 · 3).
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fracsum : N -> F

fracsum(0) = 0

fracsum(n) = fracsum(n .- 1) + 1/(n (n+1))

(b) Evaluate your function for some example inputs and look for a
pattern. Make a conjecture of the form

∀n : N.fracsum(n) = . . . .

fracsum(0) = 0

fracsum(1) = 1/2

fracsum(2) = 2/3

fracsum(3) = 3/4

We conjecture that fracsum(n) = n/(n + 1) for all natural num-
bers n.

(c) Use induction to prove your conjecture.

Proof. Let F(n) be the proposition fracsum(n) = n/(n + 1). We
will prove ∀n :N. F(n) by induction.

In the base case, F(0) says fracsum(0) = 0/1, which is true, since
fracsum(0) = 0 by definition.

Now let k be an arbitrary natural number, and suppose F(k), that
is, fracsum(k) = k/(k+ 1). We must show F(k+ 1), that is, fracsum(k+
1) = (k + 1)/(k + 2).

fracsum(k + 1)
= { definition }

fracsum(k) + 1
(k+1)(k+2)

= { assumption (induction hypothesis) }
k

k+1 + 1
(k+1)(k+2)

= { algebra }
k(k+2)

(k+1)(k+2) +
1

(k+1)(k+2)
= { algebra }

k2+2k+1
(k+1)(k+2)

= { algebra }
(k+1)2

(k+1)(k+2)
= { algebra }

k+1
k+2

© 2025 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


discrete math hw 7: learning goals r4, p4 (solutions) 6

Exercise 5 This exercise concerns a variant of the Ackermann function
(originally due to R. C. Buck), defined on pairs of natural number
inputs as follows:

A(m, n) =


2n if m = 0

0 if m ≥ 1 and n = 0

2 if m ≥ 1 and n = 1

A(m − 1, A(m, n − 1)) if m ≥ 1 and n ≥ 2

(a) Find A(1, 0), A(0, 1), A(1, 1), and A(2, 2).

• A(1, 0) = 0

• A(0, 1) = 2

• A(1, 1) = 2

• A(2, 2) = A(1, A(2, 1)) = A(1, 2) = A(0, A(1, 1)) = A(0, 2) = 4

(b) Prove that A(m, 2) = 4 for all natural numbers m.

Proof. The proof is by induction.

When m = 0, A(0, 2) = 2 · 2 = 4 by definition.

Now let k be an arbitrary natural number, and suppose A(k, 2) =
4. We will show that A(k + 1, 2) = 4 as well.

A(k + 1, 2)
= { definition of A }

A(k, A(k, 1))
= { definition of A }

A(k, 2)
= { assumption }

4

Therefore, by induction, A(m, 2) = 4 for all m.

(c) Prove that A(1, n) = 2n for all n ≥ 1.

Proof. We will prove this by induction.

In the base case, when n = 1, we have A(1, 1) = 2 by defini-
tion, and 2 = 21.
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Now let k ≥ 1 be an arbitrary natural number other than 0, and
suppose the proposition is true for k, that is, A(1, k) = 2k. Then
we must show it is also true for k + 1.

A(1, k + 1)
= { by definition (k + 1 ≥ 2 since k ≥ 1) }

A(0, A(1, k))
= { assumption }

A(0, 2k)

= { definition of A }
2 · 2k

= { algebra }
2k+1

(d) Find each of the following values. You might be able to use Disco to
find some of them; for others, you can
use the above theorems to help you
calculate a result.

(i) A(2, 3)

A(2, 3)
= { definition }

A(1, A(2, 2))
= { part (b) }

A(1, 4)
= { part (c) }

16

(ii) A(3, 3)

A(3, 3)
= { definition }

A(2, A(3, 2))
= { part (b) }

A(2, 4)
= { definition }

A(1, A(2, 3))
= { part (d)(i) }

A(1, 16)
= { part (c) }

216
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(iii) A(3, 4) (Hint: feel free to leave your answer in a convenient
algebraic form rather than expanding it out into its actual
decimal digits.)

First, let 2 ↑↑ n denote iterated exponentiation of n copies

of 2, that is, 2 ↑↑ 2 = 22, 2 ↑↑ 3 = 222
, 2 ↑↑ 4 = 2222

, and
so on. We will show that A(2, n) = 2 ↑↑ n for all n ≥ 1. In
the base case, A(2, 1) = 2 by definition. Then, if we suppose
A(2, k) = 2 ↑↑ k, then

A(2, k + 1)
= { definition }

A(1, A(2, k))
= { assumption }

A(1, 2 ↑↑ k)
= { part (c) }

22↑↑k

= { definition of ↑↑ }
2 ↑↑ (k + 1)

Now we may compute

A(3, 4)
= { definition }

A(2, A(3, 3))
= { part (d)(ii) }

A(2, 216)

= { previous lemma }
2 ↑↑ 216,

a truly gigantic number consisting of 65, 536 copies of 2
stacked in a tower of exponents.
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