S1: I can state the definitions, and determine membership, of standard sets such as \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and \mathbb{R} .

Exercise 1 Name three examples of numbers which are members of \mathbb{Z} but not \mathbb{N} .

ℝ includes zero and all positive whole numbers; ℤ includes negative numbers as well. Therefore, -3, -7, and -49 are three examples of numbers in ℤ but not ℝ.

Exercise 2 Name three examples of numbers which are in \mathbb{Q} but not \mathbb{Z} .

Q includes all positive and negative fractions. Three examples of elements of Q which are not in \mathbb{Z} are 1/2, 19/47, and -2/3.

S2: I can evaluate and construct sets using union, intersection, difference, and complement of sets, and sets defined via set comprehension notation.

Exercise 3 Let A, B, and C represent the following sets:

$$A = \{5, 8, 13, 20\}$$

$$B = \{n \mid n \in \mathbb{N} \land n < 10\}$$

$$C = \{10k \mid k \in \mathbb{Z}\}$$

Write out the elements in the sets corresponding to each expression below.

(a) A - B

 $\{5, 8, 13, 20\} - \{n \mid n \in \mathbb{N} \land n < 10\} = \{13, 20\}$

(b) *B* ∩ *C*

 $B \cap C$ consists of all the natural numbers which are less than ten and also a multiple of ten. There is only one such number, namely, $B \cap C = \{0\}$.

(c) $A \cap B \cap C$

Since we already know $B \cap C = \{0\}$, we are looking for $A \cap \{0\}$. But 0 is not an element of *A*, so in fact $A \cap B \cap C = \emptyset$ (the empty set). (d) $\{x \mid (x \in C \cup A) \land (|x| \le 10)\}$

We are looking for all the elements in either *C* or *A* which have an absolute value of at most 10: $\{-10, 0, 5, 8, 10\}$.

*S*₃: *I* can list all the elements in a power set, Cartesian product, or disjoint union of sets, or count them without listing them all.

Exercise 4 List all the elements of $\mathcal{P}(\{3,5,7\})$. $\{\emptyset, \{3\}, \{5\}, \{7\}, \{3,5\}, \{3,7\}, \{5,7\}, \{3,5,7\}\}$.

Exercise 5 List all the elements of $\mathcal{P}(\{1,2,3\})$	3,4	}).
---	-----	---	----

Just for variety, let's make a table to organize things this time.

1?	2?	3?	4?	subset
\checkmark	\checkmark	\checkmark	\checkmark	{1,2,3,4}
\checkmark	\checkmark	\checkmark		{1,2,3}
\checkmark	\checkmark		\checkmark	{1,2,4}
\checkmark	\checkmark			{1,2}
\checkmark		\checkmark	\checkmark	{1,3,4}
\checkmark		\checkmark		{1,3}
\checkmark			\checkmark	{1,4}
\checkmark				{1}
	\checkmark	\checkmark	\checkmark	{2,3,4}
	\checkmark	\checkmark		{2,3}
	\checkmark		\checkmark	{2,4}
	\checkmark			{2}
		\checkmark	\checkmark	{3,4}
		\checkmark		{3}
			\checkmark	$\{4\}$
				Ø

Exercise 6 List all the elements of $\{1, 2\} \times \{-3, -4, -5\}$.

There are six: $\{(1, -3), (1, -4), (1, -5), (2, -3), (2, -4), (2, -5)\}$. Remember that the order that we list the pairs does not matter (but the order of the numbers within each pair *does* matter). For example,

 $\{(1, -4), (2, -4), (1, -5), (2, -3), (2, -5), (1, -3)\}$

is also correct.

Exercise 7 List all the elements of $\{A\} \times \{B, C, D, E\}$. There are four: $\{(A, B), (A, C), (A, D), (A, E)\}$.

(i) (i)

© 2025 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Exercise 8 List all the elements of $\{A, B, C\} \times \{X, Y, Z\}$.

There are nine: $\{(A, X), (A, Y), (A, Z), (B, X), (B, Y), (B, Z), (C, X), (C, Y), (C, Z)\}$.

Exercise 9 Evaluate: $|\mathcal{P}(\{1,...,5\})|$. In general, for a finite set A, $|\mathcal{P}(A)| = 2^{|A|}$. So $|\mathcal{P}(\{1,...,5\})| = 2^5 = 32$.

Exercise 10 Evaluate: $|\{A, B, C, \dots, Z\} \times \{1, 2, 3, \dots, 10\}|$. In general, for finite sets, $|A \times B| = |A| \times |B|$. So

 $|\{A, B, C, \dots, Z\} \times \{1, 2, 3, \dots, 10\}| = |\{A, B, C, \dots, Z\}| \times |\{1, 2, 3, \dots, 10\}| = 26 \times 10 = 260.$

P2: I can write proofs about sets, set operations, and the subset relation.

Do at least one of the following exercises.

Exercise 11 Prove that for all sets *S* and *T*,

$$\overline{S \cap T} = \overline{S} \cup \overline{T}.$$

Proof. Let *S* and *T* be arbitrary sets. To show $\overline{S \cap T} = \overline{S} \cup \overline{T}$, we will show that each is a subset of the other.

To show
$$\overline{S \cap T} \subseteq \overline{S \cup T}$$
, let $x \in \overline{S \cap T}$; we must show $x \in \overline{S \cup T}$ as
well.
$$\begin{bmatrix} x \in \overline{S \cap T} \\ \equiv & \{ Definition of set complement \} \\ \neg(x \in S \cap T) \\ \equiv & \{ Definition of set intersection \} \\ \neg(x \in S \land x \in T) \\ \equiv & \{ De Morgan \} \\ \neg(x \in S) \lor \neg(x \in T) \\ \equiv & \{ Definition of set complement \} \\ (x \in \overline{S}) \lor (x \in \overline{T}) \\ \equiv & \{ Definition of set union \} \\ x \in \overline{S} \cup \overline{T} \\ \end{bmatrix}$$

To show $\overline{S} \cup \overline{T} \subseteq \overline{S \cap T}$, we must show that any $x \in \overline{S} \cup \overline{T}$ is also an element of $\overline{S \cap T}$. But in fact we have already shown this: the previous sequence of equivalences works in reverse order, too.

© 2025 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Exercise 12 Prove that for all sets *S*, *T*, and *U*,

$$S \cup (T \cap U) = (S \cup T) \cap (S \cup U).$$

Proof. Let *S*, *T*, and *U* be arbitrary sets. We must show that both $S \cup (T \cap U) \subseteq (S \cup T) \cap (S \cup U)$ and vice versa.

Let *x* be an arbitrary element of $S \cup (T \cap U)$. We must show $x \in$ $(S \cup T) \cap (S \cup U)$ as well. $x \in S \cup (T \cap U)$ Definition of set union } \equiv { $(x \in S) \lor (x \in T \cap U)$ { Definition of set intersection } \equiv $(x \in S) \lor ((x \in T) \land (x \in U))$ \equiv $\{ \lor \text{ distributes over } \land \}$ $((x \in S) \lor (x \in T)) \land ((x \in S) \lor (x \in U))$ { Definition of set union } \equiv $(x \in S \cup T) \land (x \in S \cup U)$ \equiv { Definition of set intersection } $x \in (S \cup T) \cap (S \cup U)$

Let *x* be an arbitrary element of $(S \cup T) \cap (S \cup U)$. Then we must show that $x \in S \cup (T \cap U)$. However, the sequence of equivalences shown above already does this in reverse.

