
Discrete Math HW 3: Learning goal P1 (solutions)

P1: I can write an appropriate proof outline for a given propositional logic
formula.

Exercise 1 Write an outline for a proof of P→ (Q ∧ R).

Proof. We must show P → (Q ∧ R). So suppose P; we must show
Q ∧ R.

In order to show Q ∧ R, we will show both separately.

Proof of Q (using P)

Proof of R (using P)

Since we have shown Q and R separately, therefore we have proved
Q ∧ R.

We showed Q ∧ R under the supposition that P is true; therefore
P→ (Q ∧ R).

Exercise 2 Write an outline for a proof of P↔ ¬Q.

Proof. To show P ↔ ¬Q, we will show both directions of the implica-
tion.

(→) First, we will show P→ ¬Q. Suppose P; we must show ¬Q.

To show ¬Q, we will prove Q→ F. So suppose Q is true; we
will derive a contradiction.

Proof that Q (and P) together make a contradiction.

Since supposing Q leads to a contradiction, therefore ¬Q.

We proved ¬Q under the supposition P, so P→ ¬Q.

(←) Next, we will show ¬Q → P. Suppose ¬Q; we will show P.
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Proof of P (using ¬Q)

Therefore, ¬Q→ P.

We have shown both P→ ¬Q and ¬Q→ P. Therefore, P↔ ¬Q.

Exercise 3 Write an outline for a proof of ∀x : D. P(x) ∧Q(x).

Proof. Let d be an arbitrary element of D. We will show P(d) ∧
Q(d).

To prove P(d) ∧Q(d), we will prove both separately.

Proof of P(d)

Proof of Q(d)

Therefore, since we proved P(d) ∧Q(d) for an arbitrary element of D,
in fact it holds for all elements of D, that is, ∀x : D. P(x) ∧Q(x).

Exercise 4 Write an outline for a proof of ∃n : D. P(n)→ Q(n). Use a
proof by contrapositive for the implication.

Proof. To show ∃n : D. P(n) → Q(n), we will show that P(d) → Q(d)
holds for the specific value d in the domain D.

We will show P(d) → Q(d) using the contrapositive, ¬Q(d) →
¬P(d). So suppose ¬Q(d); we will show ¬P(d).

Proof of ¬Q(d) (using ¬P(d))

Therefore ¬Q(d)→ ¬P(d) since we proved ¬P(d) under the sup-
position that ¬Q(d) is true.

Since P(d)→ Q(d) holds for the specific value d, we have proved that
such an element exists, that is, ∃x : D. P(x)→ Q(x).

Exercise 5 Prove: for all integers m and n, if mn is even, then either
m is even or n is even (or both).

Translating to propositional logic, we are asked to prove

∀m :Z. ∀n :Z. Even(mn)→ (Even(m) ∨ Even(n)).

Proof. Let a and b be arbitrary integers; we will prove that Even(ab)→
(Even(a) ∨ Even(b)).
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To prove this implication, we will prove the contrapositive, that is,

¬(Even(a) ∨ Even(b))→ ¬Even(ab)

≡
(¬Even(a) ∧ ¬Even(b))→ ¬Even(ab)

Since we are assuming ¬Even ≡ Odd, this is equivalent to show-
ing

(Odd(a) ∧Odd(b))→ Odd(ab).

So suppose Odd(a) ∧Odd(b); we will show Odd(ab).

Since we are supposing Odd(a)∧Odd(b), that is, both a
and b are odd, there must be integers j and k such that a =

2j + 1 and b = 2k + 1.
In order to show Odd(ab), we must show there exists some
integer l such that ab = 2l + 1. But

ab = (2j+ 1)(2k+ 1) = 4jk+ 2j+ 2k+ 1 = 2(2jk+ j+ k)+ 1,

and therefore l = 2jk + j + k is such an integer.

We proved Odd(ab) under the supposition Odd(a)∧Odd(b),
so (Odd(a) ∧Odd(b))→ Odd(ab).

Therefore the contrapositive Even(ab)→ (Even(a)∨Even(b)) holds
as well.

Since we proved this for arbitrary integers a and b without assuming
anything about them, in fact this is true for all integers.

Exercise 6 Prove: for any positive integer n, n is even if and only if
7n + 4 is even.

We are asked to prove

∀n :PosInt. Even(n)↔ Even(7n + 4),

which is equivalent to

∀n :Z. (n > 0)→ (Even(n)↔ Even(7n + 4)).

Proof. Let n be an arbitrary integer, and suppose n > 0. We will
show (Even(n) ↔ Even(7n + 4)), by showing the implication in both
directions.
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(→) Suppose Even(n), that is, suppose there is an integer j such that
n = 2j. Then we must show Even(7n + 4), that is, 7n + 4 is of the
form 2k for some integer k.

7n + 4 = 7(2j) + 4 = 14j + 4 = 2(7j + 2).

If k = (7j+ 2) then 7n+ 4 = 2k, so we have shown 7n+ 4 is even.

(←) In the other direction, we must show Even(7n+ 4)→ Even(n);
we will show the contrapositive, that is, Odd(n)→ Odd(7n + 4).

Suppose Odd(n), that is, suppose n = 2j + 1 for some inte-
ger j. We will show Odd(7n + 4).

7n + 4 = 7(2j + 1) + 4 = 14j + 11 = 2(7j + 5) + 1

Therefore, 7n+ 4 is odd, since it is one more than twice an in-
teger.

We showed Odd(n)→ Odd(7n+ 4), which is equivalent to its con-
trapositive, Even(7n + 4)→ Even(n).

We showed both directions of the biconditional for an arbitrary
integer n. Note that we never actually made use of the fact that n >

0, so the proof in fact shows that this is true for all integers, not just
positive integers.
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