P1: I can write an appropriate proof outline for a given propositional logic formula.

Exercise 1 Write an outline for a proof of $P \rightarrow (Q \land R)$.

Proof. We must show $P \rightarrow (Q \land R)$. So suppose *P*; we must show $Q \land R$.

In order to show $Q \wedge R$, we will show both separately.

Proof of Q (using P)

Proof of R (using P)

Since we have shown *Q* and *R* separately, therefore we have proved $Q \wedge R$.

We showed $Q \wedge R$ under the supposition that *P* is true; therefore $P \rightarrow (Q \wedge R)$.

Exercise 2 Write an outline for a proof of $P \leftrightarrow \neg Q$.

Proof. To show $P \leftrightarrow \neg Q$, we will show both directions of the implication.

 (\rightarrow) First, we will show $P \rightarrow \neg Q$. Suppose *P*; we must show $\neg Q$.

To show $\neg Q$, we will prove $Q \rightarrow F$. So suppose Q is true; we will derive a contradiction.

Proof that Q (and P) together make a contradiction.

Since supposing *Q* leads to a contradiction, therefore $\neg Q$.

We proved $\neg Q$ under the supposition *P*, so $P \rightarrow \neg Q$.

 (\leftarrow) Next, we will show $\neg Q \rightarrow P$. Suppose $\neg Q$; we will show *P*.

Proof of *P* (using $\neg Q$) Therefore, $\neg Q \rightarrow P$.

We have shown both $P \rightarrow \neg Q$ and $\neg Q \rightarrow P$. Therefore, $P \leftrightarrow \neg Q$. \Box

Exercise 3 Write an outline for a proof of $\forall x : D. P(x) \land Q(x)$.

Proof. Let *d* be an arbitrary element of *D*. We will show $P(d) \wedge P(d)$ Q(d).

To prove $P(d) \land Q(d)$, we will prove both separately. Proof of P(d)Proof of Q(d)

Therefore, since we proved $P(d) \wedge Q(d)$ for an arbitrary element of *D*, in fact it holds for all elements of *D*, that is, $\forall x : D. P(x) \land Q(x)$.

Exercise 4 Write an outline for a proof of $\exists n : D. P(n) \rightarrow Q(n)$. Use a proof by contrapositive for the implication.

Proof. To show $\exists n : D. P(n) \rightarrow Q(n)$, we will show that $P(d) \rightarrow Q(d)$ holds for the specific value *d* in the domain *D*.

We will show $P(d) \rightarrow Q(d)$ using the contrapositive, $\neg Q(d) \rightarrow$ $\neg P(d)$. So suppose $\neg Q(d)$; we will show $\neg P(d)$. *Proof of* $\neg Q(d)$ (*using* $\neg P(d)$)

Therefore $\neg Q(d) \rightarrow \neg P(d)$ since we proved $\neg P(d)$ under the supposition that $\neg Q(d)$ is true.

Since $P(d) \rightarrow Q(d)$ holds for the specific value *d*, we have proved that such an element exists, that is, $\exists x : D. P(x) \rightarrow Q(x)$.

Exercise 5 Prove: for all integers *m* and *n*, if *mn* is even, then either *m* is even or *n* is even (or both).

Translating to propositional logic, we are asked to prove

 $\forall m: \mathbb{Z}. \forall n: \mathbb{Z}. \operatorname{Even}(mn) \to (\operatorname{Even}(m) \lor \operatorname{Even}(n)).$

Proof. Let *a* and *b* be arbitrary integers; we will prove that $Even(ab) \rightarrow be arbitrary integers$. (Even(a) \lor Even(b)).

\odot \odot

© 2025 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

To prove this implication, we will prove the contrapositive, that is,

$$\neg(\operatorname{Even}(a) \lor \operatorname{Even}(b)) \to \neg\operatorname{Even}(ab) \equiv (\neg\operatorname{Even}(a) \land \neg\operatorname{Even}(b)) \to \neg\operatorname{Even}(ab)$$

Since we are assuming \neg Even \equiv Odd, this is equivalent to showing

$$(\mathrm{Odd}(a) \wedge \mathrm{Odd}(b)) \to \mathrm{Odd}(ab).$$

So suppose $Odd(a) \land Odd(b)$; we will show Odd(ab).

Since we are supposing $Odd(a) \land Odd(b)$, that is, both *a* and *b* are odd, there must be integers *j* and *k* such that a = 2j + 1 and b = 2k + 1. In order to show Odd(ab), we must show there exists some integer *l* such that ab = 2l + 1. But

ab = (2j+1)(2k+1) = 4jk+2j+2k+1 = 2(2jk+j+k)+1,

and therefore l = 2jk + j + k is such an integer.

We proved Odd(ab) under the supposition $Odd(a) \land Odd(b)$, so $(Odd(a) \land Odd(b)) \rightarrow Odd(ab)$.

Therefore the contrapositive $\text{Even}(ab) \rightarrow (\text{Even}(a) \lor \text{Even}(b))$ holds as well.

Since we proved this for arbitrary integers *a* and *b* without assuming anything about them, in fact this is true for all integers. \Box

Exercise 6 Prove: for any positive integer *n*, *n* is even if and only if 7n + 4 is even.

We are asked to prove

 $\forall n$:PosInt. Even $(n) \leftrightarrow$ Even(7n + 4),

which is equivalent to

$$\forall n : \mathbb{Z}. \ (n > 0) \to (\operatorname{Even}(n) \leftrightarrow \operatorname{Even}(7n + 4)).$$

Proof. Let *n* be an arbitrary integer, and suppose n > 0. We will show (Even $(n) \leftrightarrow \text{Even}(7n + 4)$), by showing the implication in both directions.

\odot \odot

© 2025 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

 (\rightarrow) Suppose Even(n), that is, suppose there is an integer j such that n = 2j. Then we must show Even(7n + 4), that is, 7n + 4 is of the form 2k for some integer k.

$$7n + 4 = 7(2j) + 4 = 14j + 4 = 2(7j + 2)$$

If k = (7j+2) then 7n+4 = 2k, so we have shown 7n+4 is even.

(\leftarrow) In the other direction, we must show Even(7*n*+4) \rightarrow Even(*n*); we will show the contrapositive, that is, Odd(*n*) \rightarrow Odd(7*n*+4).

Suppose Odd(n), that is, suppose n = 2j + 1 for some integer *j*. We will show Odd(7n + 4).

$$7n + 4 = 7(2j + 1) + 4 = 14j + 11 = 2(7j + 5) + 1$$

Therefore, 7n + 4 is odd, since it is one more than twice an integer.

We showed $Odd(n) \rightarrow Odd(7n+4)$, which is equivalent to its contrapositive, $Even(7n+4) \rightarrow Even(n)$.

We showed both directions of the biconditional for an arbitrary integer *n*. Note that we never actually made use of the fact that n > 0, so the proof in fact shows that this is true for all integers, not just positive integers.

