Discrete Math HW 2: Learning goals L2—L5 (solu-
tions)

L2: [ can use algebraic laws to rewrite and simplify, or prove the equiv-
alence of, formulas of propositional logic.

Exercise 1 Each of the following is an incorrect attempt to establish
a logical equivalence via a series of transformations. For each one,
explain the mistake, and give specific values of the propositional
variables for which the starting proposition does not have the same
truth value as the ending proposition.

@ pVv(pArg)
= { Associativity |}
(PVp)Ag
= { Idempotence |}
pAq

The Associativity step is incorrect: associativity only applies
when we have something like x A (y Az) or x V (y V z). We cannot
use it when there is one V and one A, as there is here.

Note that the Idempotence step is in fact correct: idempotence
tells us that p V p = p, so it is correct to replace one by the other.

Whenp=Tandg=F,wehavepV (pAgq)=TbutpAgq=F.

®)  pA(-pVY)
= { Distributivity }
(pvV-p)A(pVa)
= { Excluded Middle }
TA(pVag)
= { Identity }
pVq

The Excluded Middle and Identity steps are correct; the incorrect
step is Distributivity, which gets the A and V switched. In fact,
distributivity tells us that p A (=pV gq) = (pA—p) V (pAq).
Whenp=Fandq=T,wehave pA(-pVq) =Fbutpvg=T.

© —(gV(=pAr))
= { De Morgan }
=gV o (-pAr)
= { Double negation }
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—qV (p A7)

Both steps are incorrect. In the De Morgan step, the V should
have switched to A. And in the second step, Double Negation
does not apply since we do not have —(—p), but rather ~(—p A 7).

When g = F the last proposition is true no matter what p and r
are; but when p = F and r = T, the first proposition is false.

Exercise 2 Use a chain of logical equivalences to show that
~(=pAp)A-(gng)) =pVa.

~(=(pAp) A(ang))
= { Idempotence (twice) }

—(=pA—q)

{ DeMorgan |}
—(=p) vV =(—q)

= { Double negation (twice) }
pVq

Exercise 3 Use a chain of logical equivalences to show that

(pAg) =g
is a tautology. Hint: to show that something is a
tautology, show that it is logically
( pA q) —q equivalent to True.
= {  Implication;a - b=-aVb |
~(pAg)Vy
= { DeMorgan }
(=pVv—q) Vg
= [ Associativity }
—pV(=qV9)
= { Excluded Middle }
-pVT
= { Annihilation }
T
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L3: I can use De Morgan laws to simplify negations of propositions with
quantifiers, AND, and OR.

Exercise 4 Express the negation of each proposition below so that all
negation symbols immediately precede predicate variables. In other
words, “push negation inwards as far as possible”. For example,
given the proposition Vx : D. P(x) V Q(x), we could express its
negation as

dx : D.=P(x) A =Q(x).

Complete at least two to get credit for this exercise.

(@) Vx:D. T(x)V G(x)V F(x)

Ix:D. =T (x) A =G(x) A =F(x)

(b) Vx:D. Jy:E. P(x) AQ(x,y) AR(y)

3x:D. Vy:E. =P(x) V =Q(x,y) V =R(y)

(c) (Ix:Z.P(x))V (Vy:Z. Q(x))

(Vx:Z. =P(x)) A (Fy:Z. =Q(x))

(d) Vx:S.3y:D. H(x,y) — (P(x)V Q(y))
Careful! There is no De Morgan law that lets us distribute nega-
tion over implication. In fact =(P — Q) # —-P — —Q. In order to
complete this exercise we must first translate implication via the
law P - Q= -PV Q.

~(¥x:S. 3y:D. H(x,y) — (P(x) V Q(1)))

{ Implication }
~(¥x:S. 3y:D. =H(x,y) V (P(x) V Q1))
De Morgan }

{

Jx:S.Vy:D. ~—H(x,y) A =(P(x) VQ(y)))
= {
(

Double Negation, De Morgan }
Ix:S.Yy:D. H(x,y) A (—=P(x) A —=Q(y)))

() Ym:D.Vn:D. P(m,n) <> Q(m,n)

We must be careful here too, since =(P <+ Q) # (=P <> —Q) (in
fact, ~(P <> Q) = P <> —Q; showing this is a nice exercise).
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=(Vm:D.Vn:D. P(m,n) + Q(m,n))

{ Iff )
—(Vm:D.Vn:D. (P(m,n) — Q(m,n)) A (Q(m,n) — P(m,n))

{ De Morgan, Implication, Double Negation }
Jm:D. 3n:D. (P(m,n) A—Q(m,n))V (Q(m,n) N —P(m,n))

Lg: I can formalize English statements as propositional logic formulas,
making appropriate use of logical connectives and nested quantifiers.

Exercise 5 For each English sentence below:
e Translate it into formal propositional logic using quantifiers.

¢ Decide if it is true or false. Justify your answer using a truth table,
algebraic reasoning, and/or an informal logical argument.

Complete at least three to get credit.

(@) There is an integer n such that 20 is 7 more than .

n:Z2.20=7+n

This is true: 13 is such a number.

(b) For every integer n, 7 more than 7 is less than 20.

Vn:Z.7+n <20

This is false. As a counterexample, consider n = 100: it is not
true that 7 + 100 < 20. Hence 7 +n < 20 is not true for all
integers n.

(c) There are two integers which add to 6.

I:Z. Iy Z. x+y=6
This is true. For example, 2 and 4 are such integers.

(d) For any propositions p, g, and 7, if p implies q and q implies 7,
then p implies r.

Vp:Prop. Vq:Prop. Vr:Prop. (p > q) AN (g — 1)) = (p — 1)

This is true, i.e. implication is transitive. One way to see this is to
make a truth table.
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(e) For every proposition p, there is a proposition g such that (p A
q) — True.

Vp:Prop. 3q:Prop. (pANq) = T

This is true: we can always pick g4 = F. Then no matter what p is,
(pNg) = T=F—=T=T.

(f) For every proposition p, there is a proposition g such that p A g is
logically equivalent to True.

Vp:Prop. 3q:Prop. (pAq) =T

This is false. As a counterexample, consider p = F: there is no
way to pick a proposition g such that FAg =T.

Exercise 6 Translate each English sentence below into formal propo-
sitional logic, using quantifiers as appropriate. You are welcome to
use the predicates Sq(n) = “n is a perfect square” and Even(n) = “n is
even” which we defined in class.

(a) If nis a perfect square, n + 2 is not a perfect square.
Vn:IN. Sq(n) — —=Sq(n +2)

Remember that when a statement talks about some variable
without defining it, we should usually interpret it as a V.

(b) If mn is even, then either m is even or n is even (or both).

Vm:Z.Vn:Z. Even(mn) — (Even(m) V Even(n))

(c) Any integer n is even if and only if 7n 4 4 is even.

Vn:Z. Even(n) <> Even(7n + 4)

(d) Every natural number can be written as the sum of two squares
of natural numbers.

Vn:IN. 3p:IN. 39:IN. Sq(p) ASq(g) A (n =p+4q)

OR
Vn:IN. Jp:IN. 33:IN. (n = Pz + qz)

Note that it does not make sense to write something like Sq(p) +
Sq(gq), since this is a type error: Sq(p) is a proposition, i.e. a true-
or-false thing, not a number that can be added.
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Ls: I can express quantified statements in equivalent ways with differ-
ent domains.

Exercise 7 Rewrite the below proposition into a logically equivalent
proposition using a quantifier with domain Z.

Vx:IN.7x =5 >10=Vx:Z. (n > 0) — (7x —5 > 10)

Exercise 8 Rewrite the below proposition into a logically equivalent
proposition using a quantifier with domain Z.

Ip:N.pP2+p=6=3p:Z. (p >0)A(p*> +p =6)

Exercise 9 Rewrite the following proposition into a logically equiva-
lent proposition using only quantifiers over Z, that is, using V and 3
with domain Z instead of the more restricted domain Even. You may
assume there is a predicate Even(n) which means “n is even”.

Vx:Even. Jy:Even. x = y+2 = Vx:Z. Even(x) — (Jy:Z. Even(y) Ax =y +2)
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