Creating a Computer Science Canon: a Course of “Classic”
Readings in Computer Science

Michael Eisenberg
Department of Computer Science and Institute of Cognitive Science
University of Colorado
Boulder, CO 80309-0430
duck@cs.colorado.edu

Abstract

Computer science has a reputation of being a discipline in a
perpetual state of accelerated progress—a discipline in
which our techniques, our hardware, our software systems,
and our literature rarely exhibit a staying power of more
than several years. While undeniably exciting, this state of
continual intellectual upheaval can leave computer science
students (and faculty) with a disturbing sense that there is
no essential core of great work within the discipline. This
paper describes a readings course entitled “Computer
Science: the Canon” whose purpose is to counter this
perception by exploring a set of “great works” in computer
science. We describe our own (undoubtedly idiosyncratic)
reading list used for the course, and discuss several central
issues involved in offering such a course within a computer
science curriculum.

1 Introduction: An Ephemeral Discipline?

Few academic disciplines are swifter-moving, more prone
to recurring upheaval (or renewal), than computer science.
Indeed, it can often seem that within a period of four or five
years at most, a significant proportion of one’s favorite
subject matter—be it artificial intelligence, computer
architecture, or programming language design—has been
entirely revamped, with older references becoming obsolete
and newer ones mandatory. For most computer science
teachers, this is part of the challenge and allure of the
subject; there is a true excitement in participating in what
seems to be a pattern of near-continual intellectual
revolution.

At the same time, even teachers of computer science must
occasionally pause for breath; and in our reflective
moments, it is possible to wonder whether there is anything
not ephemeral in our field—any body of work to serve as
an emotional contrast to a tone of perpetual metamorphosis.
One might of course identify certain relatively long-lived
core ideas within computer science, but the question here is
focused on our discipline’s literature. Is there any writing
in today’s curriculum that could conceivably be worth
rereading in a generation’s time—or anything written a
generation ago that is worth rereading today? Or, to put the
matter another way: is there anything that we would deem
as an essential core of great literature within computer
science—a set of works that every “serious” student of the
subject should have read?

This paper describes a course that reflects an (ongoing)
attempt to answer this question. The semester-long
course—entitled “Computer Science: the Canon”—has
been offered on four separate occasions at the University of
Colorado (and will almost certainly be offered again within
the next two years). The Canon—as it will be referred to in
the remainder of this paper—is a “great-readings” course,
structured primarily as a discussion seminar, and offered to
both undergraduates and graduate-level students. The
purpose of the course is to give computer science students a
chance to encounter, explore, and discuss works that might
arguably be said to have achieved a certain degree of
longevity and importance.

In the following section of this paper we present a table
summarizing the reading list that has been used for the
Canon, and discuss (from the perspective of the teacher)
several recurring issues in offering a course of this sort
within a department of Computer Science. The third section
presents—in all-too-encapsulated form!—a number of
reflections on the individual works themselves, and how
they have been received by our students. In the fourth and
final section, we discuss several plausible ways in which a
“Canon-like” course might be integrated within a broader
computer science curriculum.

Table 1: The Computer Science Canon—a (Suggested) Reading List

Author

Title and Year

Publisher or Source

Aiken, Howard

Proposed Automatic Calculating Machine
[1937]

Reprinted in Cohen, Welch, and Campbell (eds.), Makin'
Numbers: Howard Aiken and the Computer. Cambridge: MIT
Press, 1999.

Ada Augusta, Notes on the Analytical Engine [1842; Reprinted in P. and E. Morrison (eds.), Charles Babbage
Countess of accompanying a paper by L. Menabrea] and his Calculating Engines. New York: Dover, 1961,
Lovelace
Babbage, Of the Analytical Engine [1864] Passages from the Life of a Philosopher. (Reprinted by
Charles Rutgers University Press, M. Campbell-Kelly (ed.), 1994.)
Backus, J. Can Programming be Liberated from the Communications of the ACM, 21: 8

Von Neumann Style? A Functional Style

and Its Algebra of Programs [1978]
Berkeley, E.C. Giant Brains, or Machines that Think New York: John Wiley

[1949]

Boole, George

An Investigation of the Laws of Thought
[1854]

Reprinted by New York: Dover Press.

Bush, Vannevar

As We May Think [1945]

Reprinted in Nyce, J. and Kahn, P. (eds.) From Memex to
Hypertext. San Diego: Academic Press, 1991.

Brooks, Frederick

The Mythical Man-Month [1975]

Reading, MA: Addison-Wesley.

Clarke, Arthur C.

2001: A Space Odyssey [1968]

Reprinted by New York: New American Library.

Dijkstra, E. Go To Statement Considered Harmful Reprinted in Communications of the ACM, 26:1 (Jan. 1983)
[1968]
Solution of a Problem in Concurrent
Programming Control [1965]

Feynman, R. There's Plenty of Room at the Bottom In A. Hey (ed.), Feynman and Computation, Reading, MA:
[1959] Perseus Books, 1999.

Gardner, M. Scientific American columns on John Reprinted in Wheels, Life, and other Mathematical
Conway’s game of Life (approx. 1970) Amusements. New York: W. H. Freeman 1985.

Godel, K. On Formally Undecidable Propositions of Reprinted by New York: Dover Press.
Principia Mathematica and Related
Systems [1931]

Karp, R. Reducibility among Combinatorial In R.E. Miller and J. W. Thatcher, eds. Complexity of
Problems Computer Computations. NY: Plenum Press, 1972, pp. 85-

104.
Leibniz, G. On His Calculating Machine [1685] In Smith, D. E. (ed.), A Source Book of Mathematics, New
York: Dover Books, 1959.

Licklider, J. C. R. | Man-Computer Symbiosis [1960], and IRE Transactions on Human Factors in Electronics, HFE-1:
The Computer as a Communication 4-11, March
Device [1968] Science and Technology, April.

McCulloch, W. A logical calculus of the ideas immanent Originally in Bulletin of Mathematical Biophysics. Reprinted

and Pitts, W. in nervous activity [1943] in Embodiments of Mind. Cambridge, MA: MIT Press, 1965.

Minsky, M. and Perceptrons [1969] Cambridge, MA: MIT Press.

Papert, S.

Naur, et al. Report on the Algorithmic Language Algol | Communications of the ACM, 3:5
60 [1960]

Papert, S. Mindstorms [1980] Cambridge, MA: MIT Press.

Pascal, B. On His Calculating Machine [c. 1650] In Smith, D. E. (ed.), A Source Book of Mathematics, New

York: Dover Books, 1959.

Shannon, C. The Mathematical Theory of

Communication [1948]

Reprinted in Shannon, C. and Weaver, W., The
Mathematical Theory of Communication. University of lllinois
Press, 1963.

Simon, H. The Sciences of the Artificial [1969/1981] Cambridge, MA: MIT Press. (2nd edition)

Sutherland, I. Sketchpad: a Man-Machine Graphical Reprinted in Glinert, E. (ed.) Visual Programming
Communication System [1963] Environments: Paradigms and Systems. Los Alamitos, CA:

IEEE Computer Science Press, 1990, pp. 198-215.

Tarjan, R. Depth-first search and linear graph SIAM Journal on Computing, 1(2):146-160, June 1972.
algorithms. [1972]

Turing, A. On Computable Numbers, with an Originally in Proceedings of the London Mathematical
Application to the Entscheidungsproblem Society, v.42. Reprinted in Davis (ed.), The Undecidable,
[1937] New York: Raven Press, 1965.
and Originally in Mind. Reprinted in Collins and Smith (eds.)

Computing Machinery and Intelligence

Readings in Cognitive Science, San Mateo, CA: Morgan
Kaufmann, 1988.

[1950]
Von Neumann, J. | First Draft of a Report on the EDVAC Reprinted (in part) in Randell, ed., The Origins of Digital
[1945] Computers: Selected Papers. New York: Springer-Verlag,

The General and Logical Theory of
Automata [1951]

1973

Reprinted in J. Newman (ed.), The World of Mathematics.
New York: Simon and Schuster, 1956

Wiener, N. Cybernetics [1948/1961]

Cambridge, MA: MIT Press, 1962,

2 The Canon: Reading List and Course Design

Before proceeding to a discussion of the course itself, it
seems worthwhile to present the reading list that we have
employed. Since no two semesters have used exactly the
same set of readings, Table 1 above includes what is
actually a “composite” reading list, comprising most of
the papers and books that have appeared in at least one
iteration of the course (where possible, accompanied by
anthologies or relatively recent sources in which these
materials may be found).

In any such list, the particular choices will inevitably be
idiosyncratic, and must therefore be put forward in a spirit
of caution. (The reader has already, no doubt, rejected
some of the choices here and has proposed at least a half
dozen new ones of his or her own.) Nonetheless, the
entries listed in Table 1 seem to be at least a plausible set
of “canonical” readings; at least, in the course of a
decade’s worth of conversation on the subject with
colleagues, none of them has been a consistent and
obvious target for removal.

With Table 1 serving, then, as a representative set of
choices for a great-readings course, we can discuss a
variety of recurring issues involved in offering a course of
this type.

The Pedagogical Role of Great Readings. It should be
emphasized at the outset that, for students, a course of
classic readings has a very different purpose than (say) a
course organized around either a set of current research
papers or a textbook. In particular—and here the
comparison with the textbook is most apt—classic
readings are only rarely finely-polished works of
pedagogical exposition. That is, a researcher or writer in

the process of thinking through important ideas is not, as
a rule, in the position of future writers, who can expend
their energies on devising better explanations of (by then)
well-understood ideas. Thus, one does not (for instance)
read Turing’s 1937 paper to arrive at the easiest
explanation of the Universal Turing Machine; one does
not read McCulloch and Pitts to experience one’s first
explanation of neural nets; and one doesn’t read Boole to
learn Boolean algebra. (By the same token, in the realm of
physics, one does not generally read Newton to learn
Newtonian mechanics.) The more compelling reason for
reading these authors is to see examples of creative minds
at work in the course of exploring new intellectual
territory—or, perhaps, to better understand works that had
particular historical importance. In some lucky cases, this
will also afford the student an encounter with marvelous
writing (Lovelace, Brooks, and Papert come especially to
mind); but in general, computer science students should
not expect to gain a cogent or complete introduction to
technical material from a classic.

Preparation and Background of Students (or, Who Should
Take Such a Course?). As something of a corollary to the
previous paragraph, it is likely that a beginning computer
science student will not have the preparation or breadth of
perspective needed to enjoy a classic-readings course. (A
student new to computational complexity, for example,
will simply have too much difficulty with Karp’s paper to
derive much pleasure from it.) In the case of our own
course, there is no hard-and-fast prerequisite (except for a
general degree of “mathematical sophistication and
fearlessness™); but undergraduate students not yet in their
senior (or perhaps junior) year of a computer science

major are discouraged, though not absolutely forbidden,
from taking the course.

Comparison with a History of Computing Course. A
course of this sort clearly affords a substantial overlap
with the material that might be included in a “history of
computing” course. Advanced computer science students
interested in the history of their discipline will no doubt
derive tremendous value from viewing our course as an
introduction to critical historical documents. At the same
time, we do not characterize The Canon as a history-of-
computing course (and unfortunately, our department
does not offer such a course); the “lens” of great papers is
not, in our view, the ideal one through which to view all
the larger patterns in computer science history. For
example, the development of data tabulation machines (by
Hollerith and others) in the late nineteenth and early
twentieth centuries represents an important chapter in the
history of computing; but this is a chapter that is not (to
our knowledge) associated with any particularly
provocative or compelling original writing. More
generally, many crucial strides in the history of
computing were made by means of the introduction of
commercial products; and while these products deserve a
central place in a discussion of history, they generally
have not provided an occasion for great contemporary
computer science literature. Our own feeling is that a
history-of-computing course and a great-readings course
would, in combination, make for an excellent two-
semester sequence for advanced students; we’ll return to
this suggestion at the end of this paper.

Guidelines for Selecting Readings. The readings listed in
Table 1 are admittedly somewhat skewed toward a
particular view of computer science—a view in which
topics such as artificial intelligence and human-computer
interaction have a prominent place. To some extent, the
readings are also skewed away from those works that
could be described as summaries of some piece of
software (e.g., language manuals—though the Algol 60
report is an exception); this stems from the (possibly
unjustified) intuition that such documents make for
relatively slow reading and desultory discussion. Another
aspect of the readings shown is their age: for the most
part, we have hewed to a rule that Canon papers should be
at least 20 years old to be included in the course. The
purpose of this rather arbitrary cut-off point is to provide
a rough means of ensuring the lasting interest of the work
in question. A pleasurable side-effect of this rule has been
that, within each iteration of the course, several new
works become “eligible for inclusion”: the Papert and
Simon books, for instance, were not included in the first
iteration of the course, but have since come to be added to
the reading list.

Inclusiveness and Diversity. As followers of academic
debates undoubtedly know, within the humanities there
have been impassioned—and in our view, often
fruitful—arguments over the selection of, and even the

value of, “great works” lists in disciplines such as
literature and philosophy. (See, for instance, Denby[6]
and Atlas[1] for readable discussions of these debates.)
Indeed, the title of our own course is a playful allusion to
the disputes over “canonical” reading lists in these
disciplines. One dimension of these debates focuses on
the lack of diversity exhibited by traditional selections of
classics—a pattern of selection that disproportionately
(and counterproductively) favors “dead white males.”

As it happens, the list of readings in Table 1 is heavily
populated by dead white European and American males
(though there are also some living white males and a dead
white female within the list). Our feelings about this are
frankly ambivalent. On the one hand, Table 1 reflects our
best professional judgment about the central intellectual
documents of computer science; and as such, we do not
apologize for its construction. On the other hand, the fact
that the list is so demographically skewed reflects (in our
view) broad historical inequities in professional and
academic opportunity. Our hope is that—if a “Canon-
like” course is taught in succeeding generations—the
reading list for future versions of the course will come to
reflect far greater diversity in gender, ethnic background,
and geography.

Related and Background Readings. Our experience to
date in offering The Canon suggests that the students have
enough reading to do in the course without assigning
them still more. As a consequence, we do not generally
require the students to read supplementary background or
biographical materials. To some degree, this also reflects
an intuition that “great works” should be encountered by
each individual student without too much outside
interpretation or influence as provided by additional
readings. (One consistent exception to this rule has been
the suggestion that students read the excellent Godel’s
Proof [10] by Nagel and Newman as a supplement to the
paper by Godel—the original paper itself can be quite
daunting to students without a background in
mathematical logic.)

As it happens, there are a number of good full-length
biographies of *“canonical” authors—including books
devoted to Turing [9], Von Neumann [2], Babbage [12],
Lovelace[14], Bush [15], Godel [5], Licklider [13],
Feynman [7], and Aiken [4]. There are other fine sources
of biographical material for McCulloch and Wiener [8],
Shannon [11], and Boole[3]. Again, to keep the students’
reading list manageable, and to focus attention on the
works themselves, such background readings are not
assigned within the course—but they are extremely useful
for the professor! Moreover, these readings may also
serve as the basis for extended reading and final reports.

3 Reflections and Brief Comments on Individual
Readings

While space does not allow even a cursory discussion
here of the works themselves, it is perhaps
worthwhile—in the interest of those faculty members who
may wish to pursue similar efforts—to summarize our
experiences of student reactions to several of the readings.
In general, we have noted at least a few consistent
patterns among these reactions.

Perennial Favorites: Lovelace, Brooks, Turing. What
seems to set these authors apart for the students is the
clarity and grace of their writing combined with the
importance of their subject matter. The response to
Countess Ada’s writing is often particularly strong, since
students are delighted that so many central themes of
twentieth-century computer science were anticipated a
century earlier by Lovelace and Babbage in the course of
working on Babbage’s Analytical Engine.

Perennial Least Favorites: Boole, McCulloch and Pitts.
Much of the difficulty (and student disappointment) in
reading these works stems from the perceived opacity of
the writing (in Booole’s case) and notation (in that of
McCulloch and Pitts). Typically, the professorial role in
discussing these works is not to defend them as
unassailable gems of perfection, but rather to highlight
their creativity and historical importance.

Difficult (but Positively Regarded) Papers: Gdodel,
Shannon, Feynman. Even advanced computer science
students are often unfamiliar with (or at least less than
expert in) mathematical logic, information theory, and the
physics of computation. Whether this is a defensible state
of affairs is the subject of another discussion; but it does
require additional effort for the professor in teaching this
material—usually, at least part of the class discussion is
given over to lecturing so that the students can appreciate
the ideas in these papers.

Pure Fun: Berkeley, Gardner, Clarke. These are readings
aimed at a popular audience, and everyone (including the
professor) has a grand time with them. The book by
Berkeley (a founding member of the ACM) is a special
treat, as it provides a portrait of how computers were
presented to the general public at a time when very few
actual computers were in existence.

4 Conclusions from the Teacher’s Perspective

In our own department, The Canon is regarded as an
“enrichment” course for advanced students; but faculty
members interested in instituting a similar course at other
institutions may find an opportunity to integrate such a
course either with a broader curriculum in the history of
computing (as noted earlier), or with other curricular
themes. One intriguing possibility might be to pair a
Canon-like course with a survey course expressly
focusing on futuristic ideas in computer science
(including readings in, e.g., quantum and biological

computing, spintronics, interfaces to ubiquitous
computing, and so forth).

In any event, as noted earlier, The Canon is still very
much a work-in-progress; future versions of the course
are likely to continue the process of experimenting with
the reading list, adding a few works here and subtracting
others there. This experimentation is part of what has kept
the course “fresh” from the faculty standpoint; but in
truth, the readings are for the most part so strong that they
reward both repeated reading and repeated discussion
over multiple semesters.

References

[1] Atlas, J. Battle of the Books. [1992] New York:
Norton.

[2] Aspray, W. [1990] John Von Neumann and the
Origins of Modern Computing. Cambridge, MA: MIT
Press.

[3] Bell, E. T. [1937] Men of Mathematics. New York:
Simon and Schuster.

[4] Cohen, I. B. [2000] Howard Aiken: Portrait of a
Computer Pioneer. Cambridge, MA: MIT Press.

[5] Dawson, J. [1997] Logical Dilemmas: the Life and
Work of Kurt Godel. Natick, MA: Peters.

[6] Denby, D. [1996] Great Books. New York: Simon and
Schuster.

[7] Gleick, J.. [1993] Genius: the Life and Science of
Richard Feynman. New York: Vintage Books.

[8] Heims, S. J. [1991] The Cybernetics Group.
Cambridge, MA: MIT Press.

[9] Hodges, A. [2000] Alan Turing: the Enigma. New
York: Walker and Company.

[10] Nagel, E. and Newman, J. [2002] G&del’s Proof.
(Revised Edition) New York: NYU Press.

[11] Sloane, N. and Wyner, A. (eds.) [1993] Claude
Shannon: Collected Papers. New York: IEEE Press.

[12] Swade, D. [2001] The Difference Engine. New York:
Viking Press.

[13] Waldrop, M. [2001] The Dream Machine. New
York: Viking Press.

[14] Woolley, B. [1999] The Bride of Science. New York:
McGraw-Hill.

[15] Zachary, G. [1997] Endless Frontier. New York:
Free Press.

