Median/Quickselect (Divide & Conquer Exemplar)
CSCI 382, Algorithms

October 25, 2024

Consider the following problem: given a (not necessarily sorted!)
array of n integers, find the median element (that is, the element
which would be in the middle if the array were sorted).

One obvious solution is to first sort the array in ©(nlogn) time,
and then simply access the array in the middle. However, intuitively
it feels like this is doing too much work: we don’t actually care about
the order of any of the other elements, so sorting them is a waste of
time. Can we do better than ©(nlogn)?

We consider a divide-and-conquer approach. First, if we simply
split the list in half, it doesn’t seem to help much. We could find the
median of both sides but there’s no way to compute the median of
the whole list from the two medians. But simply splitting the list in
half is not the only way to divide up a list. Since we were already
thinking about sorting, what if we partition the list so that all the
smaller elements are on one side and all the larger elements are on
the other side? If we pick a random element as the pivot, we can
partition the list into the elements < the pivot on the left and > the
pivot on the right, as in quicksort, in @(n) time.

Now what? Simply finding the median of both sides still does not
help. We can definitely say that the true median lies somewhere in
between the left and right medians but that does not really help.

The solution—as often with recursive algorithms—is to generalize
to compute something more than what is required. In particular,
instead of just finding the median element, let’s write an algorithm to
select the element which would be at index k if the list were sorted.
If we can do this, we can get the median by selecting the element
atindex |n/2]. But this ability to select any element gives us the
extra flexibility we need to use recursion to find the median, since
the median of the entire list will not be the median of one of the two
partitions, but some other index.

(Note, in practice, one would implement this so it all works in-
place on the array A, instead of generating new arrays A; and Ay,
e.. by passing along extra hi and lo parameters to specify which part
of the array to focus on.)

MEDIAN/QUICKSELECT (DIVIDE & CONQUER EXEMPLAR) 2

Require: 0 < k < |A]
1: function QUICKSELECT(A, k)
22 if |A] =1 then return A[0]

3 else

4 A1, Ay < PARTITION(A)

5 if k < |A;| then

6 return QUICKSELECT(A1, k)

7 else

8 return QUICKSELECT(A, k — |A1])
o: function PARTITION(A)

10: Pick a random pivot value in A

11 Aj < all values in A which are < pivot
12: Aj < all values in A which are > pivot
13: return A, A;

Figure 1: QUICKSELECT

Theorem 1. For any array A and any 0 < k < |A|, QUICKSELECT(A, k)
correctly returns the element with order index k, that is, the element which
would be at index k in a sorted version of A.

Proof. By strong induction on the size of A.

* When |A| = 1,since 0 < k < |A| = 1, we must have k = 0. The
algorithm returns A[0], which is indeed the item with index 0 in a
sorted version of A, since a 1-element array is already sorted.

e Otherwise, let |A] = n and assume as our induction hypothe-
sis that QuickSELECT(A’, k) works correctly on any A’ which is
smaller than 7.

Note that after the call to PARTITION, all the elements in A; are
smaller than all the elements in A;. Put another way, if we sorted
A, all the elements in A; would come first, followed by all the
elements in Aj. Thus, if k < |A1], then the element of A with order
index k falls somewhere within A1, and in fact is the element of
A1 with the same order index. On the other hand, if k > |A4],
then the order-index k element of A falls somewhere inside A;. If
k = |A1| then we want the smallest element of Ay; if k = |A1| +1
then we want the second-smallest, and so on; in general, the kth
smallest element of A will be the k — | A1| smallest element of A,.
Since the IH tells us that the recursive calls to QUICKSELECT will
correctly select these elements from A; or A;, we conclude that
QUICKSELECT is correct.

MEDIAN/QUICKSELECT (DIVIDE & CONQUER EXEMPLAR)

Theorem 2. QUICKSELECT runs in expected @ (n) time.

Proof. QUICKSELECT is a randomized algorithm, since the pivot value
is chosen randomly; in theory we could make very bad pivot choices
that would lead to bad performance. If the pivot is chosen randomly,
however, we can expect that on average it will split the array into
pieces which are 1/4 and 3/4 the size of the original array, respec-
tively (or vice versa).

We can therefore analyze QUICKSELECT using the Master Theorem.
We make one recursive call each time, so 2 = 1; in the worst case
b = 4/3;and d = 1, since we spend ©(n) time partitioning A.
Therefore a < b¥ since 1 < 4/3, so this is the first case of the Master
Theorem, and we conclude that QuickSELECT is O(n?) = O(n). We
already know that the algorithm must be ()(#), since there is no way
to correctly find the kth element without looking at all the elements.
Hence the algorithm runs in ©(#n) time. O

3

