
CSCI 382: Algorithms – Fall 2024 Brent Yorgey

In preparing your solutions to the exam, you are allowed to use any
sources including textbooks, other students and professors, previous home-
works and solutions, or any sources on the Internet. The only source you may
not use is me. Of course, I am happy to answer general questions, go over
homework problems, or answer clarifying questions about exam problems.

As usual, to “design and analyze” an algorithm means to (a) describe the
algorithm, (b) prove/justify its correctness, and (c) analyze its asymptotic
running time. Full credit will only be given for the most efficient possible
algorithms. Algorithms must be clearly explained (using pseudocode if ap-
propriate) in sufficient detail that another student could take your description
and turn it into working code. You may freely cite any theorems proved in
class (without proof), or use algorithms covered in class as subroutines.

The exam will take place on Monday, November 18, in class. You should
bring something to write with, but no other external resources are allowed.
I will provide fresh copies of the exam as well as blank paper. If you have
accommodations that you wish to make use of, let me know soon so we can
make appropriate arrangements.

Question 1. You are working IT support for the 3948th Intergalactic Linguis-
tics Convention (ILC). Since so many different languages are spoken by the
attendees, translators are used to allow people to communicate; each transla-
tor knows two languages and can translate back and forth between them. For
example, if an English speaker and a Klingon speaker want to have a conver-
sation, they could find a translator who knows both languages. Sometimes
multiple translators might even be needed. For example, the same two people For the purposes of this problem we will not

worry about the fact that messages tend to
be garbled by repeated translation; the ILC
translators are so good that this does not
happen.

could also communicate if they could find an English-Japanese translator, a
Japanese-Xzcvrbl translator, and a Xzcvrbl-Klingon translator.

Due to the high number of attendees and different languages they speak
(last year’s convention had 6.8 trillion attendees speaking 3 trillion different
languages) finding translators can be difficult. This is where you come in!
You are developing an app that attendees can use to help them find appropri-
ate translators.

Before the convention, you will be given a list of all the languages that
might be spoken by attendees. During the convention, the app needs to sup-
port two operations: first, as translators arrive, they can use the app to check
in and list the two languages they speak. Second, attendees can query the app
by selecting two languages, and the app should tell them whether they can
communicate (based on what translators have checked in so far), and if so,
what translators they could use. You may assume that the app will be able
to communicate with a central server cluster1 where you can store any data 1 4096 networked Cray-Z 5e Pro XT servers,

each with ten 80-core GPUs (Galactic
Processing Units) running at 5.2 bogomips,
with an attached 512 zettabyte storage array

structures you wish.

(a) Let L be the number of languages spoken, and T the number of translators
who have checked in so far. Given two languages as input, explain how, in
Θ(L + T) time, you can either find a sequence of intermediate languages

Exam 2 1 Due: 10:00am, Monday, November 18



CSCI 382: Algorithms – Fall 2024 Brent Yorgey

that can be translated to allow communication between the two input
languages, or report that communication is impossible.

(b) Even Θ(L + T) can be a long time when L and T are very large; it turns
out that your app wastes a lot of time trying to find a way to communicate
between languages where the ultimate answer is that it is impossible.
So as a first step, you want to have it simply check whether there is any
way for two people to communicate at all, before doing a more expensive
search to find an actual sequence of intermediate languages. Explain how
to implement translator check-ins and translation queries so that the app
can quickly determine whether there is any way at all to translate between
two given languages or not. Make sure that both translator check-ins and

Note that the app will still take Θ(L + T)
time to search for an appropriate sequence
of translators in the case that there is a way
to communicate, but that’s OK—people
don’t mind waiting if they already know the
search is going to be successful. We just
want to be able to tell them quickly if there
is no way to communicate.

preliminary translation queries take O(lg L) time or better—in particular,
we don’t want the app to get slower as the convention goes on!

Question 2. Your close friend Polly Thyme skips up to you and says “Yo!
I’ve got a fresh new algorithm for matrix multiplication. It totally beats
Strassen.” In talking about the procedure with your friend Polly, you realize
that for a problem of size n, it divides the problem into 21 subproblems, each
of which is one-third the size of the original problem, recursively solves each
subproblem, and then combines the solutions in time O(n2). Do you believe
your friend’s claim that her algorithm is faster than Strassen’s algorithm? Feel free to look up Strassen’s algorithm and

its running time; we did not talk about it in
class.

Justify your answer.

Question 3. Given an array A[0 . . . n − 1] of integers, a wobbly pair is a
pair of integers in the array that are “out of order”: that is, where i < j but
A[i] > A[j]. For example, the array

A = [2,−1, 17, 10, 3, 8]

has 6 wobbly pairs, namely, (2,−1), (17, 10), (17, 3), (17, 8), (10, 3), and
(10, 8). Put another way, if you imagine each number “looking” down the
array to its right, there is a wobbly pair each time a number can “see” another
number which is smaller than it. The number of wobbly pairs is in some
sense a measure of how far away A is from being sorted (in fact, the number
of wobbly pairs is exactly the minimum number of adjacent swaps needed to
sort the array, and a sorted array has zero wobbly pairs).

(a) Describe, and analyze the running time of, a simple brute-force algorithm
to compute the number of wobbly pairs in a given array.

(b) Now design and analyze a more efficient algorithm to compute the number
of wobbly pairs in a given array. (Hint: think about modifying merge sort.)

Question 4. You are given a set of n potential players for your fantasy
sportsball team and a salary cap S. Each player pi also has an awesomeness
score ai (a positive real number) and a (non-negotiable) salary requirement si

Exam 2 2 Due: 10:00am, Monday, November 18



CSCI 382: Algorithms – Fall 2024 Brent Yorgey

(a positive integer). Your goal is to pick a set of players such that their total Unlike some other games, sportsball teams
can be any size, so you are free to choose
any number of players from 1 up to n.

awesomeness is as large as possible, subject to the constraint that their total
salary must not exceed S.

Design and analyze a Θ(nS)-time algorithm to find an optimal set of
sportsball players, given as input the number of players n, the salary cap S,
and two size-n arrays containing the awesomeness and salary values for the
players. (You may assume the arrays are 1-indexed if it is helpful.) Be sure
your algorithm finds not just the maximum possible awesomeness but an
actual set of players which has that total awesomeness.

Optionally, for 1 token of extra credit: k-sportsball is a variant of sports-
ball in which all teams must have exactly k players. Explain how to modify
your algorithm to take this into account. That is, given as input the set of n
players, each with awesomeness score and salary requirement, the salary cap
S, and a team size k ≤ n, explain how to find the most awesome possible
team of exactly k players which does not exceed the salary cap, in Θ(knS)
time or better.

Exam 2 3 Due: 10:00am, Monday, November 18


