
Algorithms Midterm Exam 1
October 7, 2024

In preparing your solutions to the exam, you are allowed to use any sources
including textbooks, other professors, previous homeworks and solutions, any
sources on the Internet, or (especially!) each other. The only source you may
not use is me. Of course, I am happy to answer general questions, go over
homework problems or examples from class, or answer clarifying questions
about exam problems.

You may cite any theorem proved in class or on a problem set without
proof. Likewise, you may use any algorithm from class or a problem set as a
subroutine, without having to redefine it.

The exam will take place on Monday, October 14, in class. You should
bring something to write with, but no other external resources are allowed.
I will provide fresh copies of the exam as well as blank paper. If you have
accommodations that you wish to make use of, let me know soon so we can
make appropriate arrangements.

General advice: trying to simply memorize all the solutions will most
likely go poorly. I will not look kindly on solutions which have many of the
right ideas but are confused about details, because such solutions tend to
reflect a lack of understanding. Ideally, you should deeply understand the
ideas and reasoning behind each solution, so you can correctly reconstruct
details as necessary.

For credit on the exam, you must score ‘S’ (satisfactory) or better on every
problem.

CSCI 382: Algorithms – Fall 2024 Brent Yorgey

Question 1. Characterize the asymptotic behavior of each of the following
in terms of Θ, as a function of n and/or m. Give a short proof/justification
for each answer. Full credit will only be given for the best (fastest) possible
algorithms.

(a) 1 + 2 + 3 + · · ·+ n/2

(b) 4 + 8 + 16 + 32 + · · ·+ 2n

(c) The number of handshakes at a party with n people, if everyone shakes
hands with everyone else.

(d) Time needed to find the shortest path between two given vertices in an
unweighted, undirected graph with n vertices and m edges.

(e) Time needed to find the shortest path between two given vertices in a
weighted, directed graph (assuming all weights are nonnegative) with n
vertices and m edges.

(f) The number of print statements executed by the following Python code:

for i in range(n):

for j in range(i,n):

print(j*'*')

(g) The number of times the while loop in the following Python code exe-
cutes:

x = 0

y = 1

s = 0

while y < n:

s += y

x,y = y,x+y

Question 2. Prove, or disprove with a counterexample: every tree with n ≥ 2
vertices has at least two leaves.

Question 3. Consider the following algorithm to determine whether an
undirected, unweighted graph G has any cycles: pick an arbitrary vertex v
and run a breadth-first search (BFS), generating a sequence of layers L0,
L1, L2, If there is any edge between two vertices in the same layer, then
report that G has a cycle; otherwise, report that G has no cycles.

Prove or disprove the correctness of this algorithm.

Question 4. Recall Dijkstra’s algorithm for finding shortest paths in a di-
rected, weighted graph.

(a) Why doesn’t Dijkstra’s algorithm work if edges in the graph can have
negative weights (even if there are no directed cycles)? Give an example

Exam 1 2 Due: 10:00am, Monday, October 14

CSCI 382: Algorithms – Fall 2024 Brent Yorgey

of a directed graph with no directed cycles where Dijkstra’s algorithm
fails to find the minimum-weight path between a pair of vertices. Be sure
to demonstrate that you understand why your graph is a counterexample;
that is, show what Dijkstra’s algorithm does on your example graph, and
explain why the path it finds is not the minimum-weight path.

(b) What happens if we replace the word “smallest” in Dijkstra’s algorithm
with the word “biggest”—that is, we use a max priority queue so we pull
out the vertex u with the maximum distance on each iteration, and for
each edge (u, v) we update d[v] to be the maximum of d[v] and the sum
d[u] + wuv. Can we use this modified Dijkstra’s algorithm to find longest
paths bewteen nodes in any graph without directed cycles? Prove that this
works, or give a counterexample (with explanation) where it doesn’t.

Question 5. In class, while describing Kahn’s algorithm for computing a
topological sort, I mentioned that it could be extended to find directed cycles.
Describe a Θ(V + E) algorithm which, given a directed graph G = (V, E)
as input, will either find a directed cycle in G, or report that G is acyclic. You
should describe your algorithm using appropriate pseudocode, at a level of
detail that would enable someone else to turn your algorithm into working
code (similar to what we have done in class). Prove your algorithm is correct,
and analyze its asymptotic running time.

Exam 1 3 Due: 10:00am, Monday, October 14

