The first page of your homework submission must be a cover sheet answering the following questions. Do not leave it until the last minute; it's fine to fill out the cover sheet before you have completely finished the assignment. Assignments submitted without a cover sheet, or with a cover sheet obviously dashed off without much thought at the last minute, will not be graded.

- How many hours would you estimate that you spent on this assignment?
- Explain (in one or two sentences) one thing you learned through doing this assignment.
- What is one thing you think you need to review or study more? What do you plan to do about it?

Question 1. Suppose we are maintaining a data structure under a series of n operations. Let $f(k)$ denote the actual running time of the k th operation. For each of the following functions f, determine the resulting amortized cost of a single operation. For amortized costs other than $\Theta(1)$, be sure to argue why your cost is also a lower bound, i.e. why it is not possible to do any better. Hints:

- Start by either making tables of values and looking for patterns, and/or trying to write down a mathematical expression for the total cost $f(1)+$ $f(2)+\cdots+f(n)$.
- If you notice a pattern, you could try proving it using the accounting method.
- Alternatively, if you are able to write down a mathematical expression for the total cost and simplify it, divide by n to get the amortized cost of a single operation.
(a) $f(k)$ is the largest integer i such that k is evenly divisible by 2^{i}.
(b) $f(k)=k$ if k is a power of 2 , and $f(k)=1$ otherwise.
(c) $f(k)=k$ if k is a Fibonacci number, and $f(k)=1$ otherwise.
(d) $f(k)=k$ if k is a perfect square, and $f(k)=1$ otherwise.
(e) Let T be a perfect binary search tree, storing the integer keys 1 through n. $f(k)$ is the number of ancestors of node k.

Question 2. A doubly extensible array is a data structure that stores a sequence of items and supports the following operations:

- AddToFront (x) adds x to the beginning of the sequence.
- AddToEnd (x) adds x to the $e n d$ of the sequence.
- Looker (k) returns the k th item in the sequence (0 -indexed), or NULL if the current length of the sequence is less than or equal to k.

Describe and analyze a simple data structure that implements a doubly extensible array. Your AddToFront and AddToBack algorithms should take $O(1)$ amortized time, and your LOOKUP algorithm should take $O(1)$ worst-case time. The data structure should use $O(n)$ space, where n is the current length of the sequence.

Question 3. Describe how to implement a queue using two stacks and $O(1)$ additional memory, so that the amortized time for any enqueue or dequeue operation is $O(1)$. The only access you have to the stacks is through the standard methods PUSH, POP, and ISEMPTY; in particular you should not assume anything about how the stacks are implemented. You may assume that Push and Pop take $O(1)$ time in the worst case.

The first two questions on this problem set are due to Jeff Erickson: http:// www.cs.illinois.edu/~jeffe/ teaching/algorithms.

A perfect binary tree is one in which every node has two children and all leaves have the same depth. Thus, a perfect binary tree with height h has exactly $2^{h}-1$ nodes. A perfect binary search tree has the keys in order from left to right, starting with 1 as the very leftmost leaf, $\lceil n / 2\rceil$ as the root, and n as the very rightmost leaf.

