
CSCI 382: Algorithms – Fall 2024 Brent Yorgey

The first page of your homework submission must be a cover sheet
answering the following questions. Do not leave it until the last minute;
it’s fine to fill out the cover sheet before you have completely finished the
assignment. Assignments submitted without a cover sheet, or with a cover
sheet obviously dashed off without much thought at the last minute, will not
be graded.

• How many hours would you estimate that you spent on this assignment?

• Explain (in one or two sentences) one thing you learned through doing this
assignment.

• What is one thing you think you need to review or study more? What do
you plan to do about it?

Homework 6 (Divide and conquer) 1 Due: 5:00pm, Friday, November 1



CSCI 382: Algorithms – Fall 2024 Brent Yorgey

Question 1. Suppose you are choosing between the following three algo-
rithms:

1. Algorithm A solves problems by dividing them into five subproblems of
half the size, recursively solving each subproblem, and then combining the
solutions in linear time.

2. Algorithm B solves problems of size n by recursively solving two sub-
problems of size n− 1 and then combining the solutions in constant time.

3. Algorithm C solves problems of size n by dividing them into nine sub-
problems of size n/3, recursively solving each subproblem, and then
combining the solutions in O(n2) time.

What are the asymptotic running times of each of these algorithms, and
which would you choose?

Question 2. Describe an algorithm which computes the modular exponentia-
tion

be mod m,

that is, the remainder when dividing be by m, in only O(lg e) time. You may
assume that 0 ≤ b, e, m < 232, and that arithmetic operations such as addition
and multiplication on 64-bit numbers take constant time.

Be sure to analyze the running time of the algorithm, and prove it is
correct by strong induction on e.

Recall that (a · b) ≡m (a mod m) · (b mod m), so it does not matter
whether you reduce modulo m before or after multiplication. For example,
b4 mod m ≡m (b mod m)4.

Question 3. Recall that the Fibonacci numbers Fn are defined recursively by

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2,

with the first few given by 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .
As you may know, directly turning the definition of Fibonacci numbers

into a recursive implementation is a terrible idea; the resulting algorithm
takes Θ(φn) time (where φ = (1 +

√
5)/2 ≈ 1.618 . . . ).

The usual iterative algorithm to repeatedly calculate the next Fibonacci
number from the previous two seems like it would take Θ(n) time to com-
pute Fn: it just loops from 1 to n and does one addition each loop, right?
Well. . . yes, it does one addition each loop, but we can’t really assume that
these additions take constant time, because the Fibonacci numbers involved
can get quite large! Let’s analyze the situation more carefully.

(a) Recall from a previous homework that the size of the nth Fibonacci num-
ber Fn is Θ(φn). Given this fact, approximately how many bits (in terms

Homework 6 (Divide and conquer) 2 Due: 5:00pm, Friday, November 1



CSCI 382: Algorithms – Fall 2024 Brent Yorgey

of Θ) are needed to represent Fn? Simplify your answer as much as possi-
ble.

(b) Now suppose we implement the usual iterative algorithm as follows:
initialize an array F of size n, which can hold arbitrary-size integers.
Initialize F[0] = 0 and F[1] = 1. Then loop i from 2 to n, and at each
iteration, set F[i] ← F[i − 1] + F[i − 2]. Taking into account the time
needed to add integers of a given size, what is the running time of this
algorithm?

(c) We can do better! In addition to their definition, Fibonacci numbers sat-
isfy the following recurrences (you can just take my word for it, or see
Question 5):

F2n+1 = F2
n + F2

n+1

F2n = 2FnFn+1 − F2
n

For example, F7 = 13 = F2
3 + F2

4 = 22 + 32, and F8 = 21 =

2F4F5 − F2
4 = 2 · 3 · 5− 32.

Explain how to turn these recurrences into a recursive algorithm for

3(c)
computing Fibonacci numbers, and implement this algorithm in a pro-
gramming language of your choice. Be careful not to make more recursive
calls than necessary!

(d) Analyze the running time of this algorithm. Be sure to include the time
needed to do any additions or multiplications. Assume we will use Karat-
suba’s algorithm for multiplication.

Question 4. An array A[1 . . . n] is said to have a majority element if more
than half of its entries are the same. Given an array, the task is to design an
efficient algorithm to tell whether the array has a majority element, and, if
so, to find that element. The only thing you may assume about the elements
of the array is that you can test whether two of them are equal (in constant
time). In particular, the elements of the array are not necessarily from some
ordered domain like the integers, and so there can be no comparisons of the
form A[i] > A[j]. You also may not assume that there is a hash function for
the elements, so they cannot be used as the keys of a dictionary/hash table.

(a) What is a brute-force algorithm for this problem? How long does it take to
run?

(b) Show how to solve this problem in O(n log n) time. Make sure to prove

4b

that your algorithm is correct (via induction) and give a recurrence relation
for the running time of your algorithm.

Homework 6 (Divide and conquer) 3 Due: 5:00pm, Friday, November 1

Besides appropriate base cases (you might need three), break it into two different cases: one when n is even and one when n is odd.
Split the array into two equal-size subarrays. Would it help to know their majority elements?


CSCI 382: Algorithms – Fall 2024 Brent Yorgey

Question 5. (Optional extra credit, 1 token) This question will walk you
through a proof of the Fibonacci recurrences in Question 3.

(a) Consider the 2× 2 matrix

M =

[
1 1
1 0

]
.

Compute M2, M3, and M4. What do you notice?

(b) State a conjecture about the values of Mn for n ≥ 1 and prove your
conjecture by induction on n.

(c) In practice, of course, we could compute Mn using an algorithm like the
one in Question 2. Expand the equation

M2n = (Mn)2

and use it to derive the Fibonacci recurrences in Question 3.

Homework 6 (Divide and conquer) 4 Due: 5:00pm, Friday, November 1


