
CSCI 382: Algorithms – Fall 2023 Brent Yorgey

In theory, you have already seen things on this assignment in previous
classes such as Data Structures and Discrete Math. However, very few stu-
dents remember everything here, and that’s OK. Use this assignment as an
opportunity to help you figure out some things you should review.

Start early!

Ask for help when you get stuck!

Work together, but remember to write up your own solutions.

Have fun!

I expect you to ask me for help on home-
work assignments in this class. If you never
ask for any help, you are either very smart or
very foolish.

1. How many times do you have to repeatedly halve 32 in order to reach 1
(or, put another way, how many times do you have to repeatedly double
1 in order to reach 32)? What about 8192? Consider the function which
given an input n, outputs the number of times n can be repeatedly halved
before falling below 1. What is the common mathematical name for this
function?

2. For each of the following, answer with the best (smallest) upper bound Note: students coming out of data structures
often think that big-O is specifically about
measuring how long algorithms take, but
it is not. Big-O is a tool for measuring
the rate of growth of one thing relative to
another. We often do use it measure the
rate of growth of the time needed to run an
algorithm relative to the size of the input,
but we can use it to measure rates of growth
of other things as well, such as the amount
of memory used relative to the size of the
input, the height of a tree relative to the
width, and so on. Therefore, you should
not assume that these are asking about time
unless they explicitly say so. For example,
part (a) is asking how many leaves there are
in a tree with a depth of n, that is, how fast
does the number of leaves grow relative to
the depth? It is not asking how long it would
take to find those leaves.

from this list: O(1), O(log n), O(n), O(n log n), O(n2), O(2n). Give a
brief justification for each.

(a) number of leaves in a depth-n balanced binary tree

(b) depth of an n-node balanced binary tree

(c) number of edges in an n-node tree

(d) time needed to sort a list of n items using merge sort

(e) number of distinct subsets of a set of n items

(f) number of bits needed to represent the number n in binary

(g) time needed to find the closest pair of points among n points in Eu-
clidean space by simply listing all the pairs

(h) time needed to insert n items into a binary heap

(i) time needed to find the second largest number in a sorted list of n
distinct numbers

(j) time needed to find the second largest number in an unsorted list of n
distinct numbers

3. Let pn be defined for all n ≥ 0 by If you need a refresher on recursion and
induction, there are a lot of resources posted
on the course website!p0 = 0

pn = 2pn−1 + 1 (n > 0)

State and prove a closed (that is, non-recursive) formula for pn.

Homework 0 (Concept review) 1 Due: 5:00pm, Wednesday, September 4



CSCI 382: Algorithms – Fall 2023 Brent Yorgey

4. We will not use the syntax of any particular programming language in
this course to specify algorithms. In class, I will tend to use Python-like
pseudocode, which is like real code except that it can include English
phrases to avoid specifying too much detail. For example, Algorithm 1
below gives some pseudocode for finding the smallest integer in an array.
Notice that it uses the phrase “a is smaller than m” in the condition of the
if. (Of course, in this example it would have actually been shorter to just
write “a < m”; the point is that we can describe things informally if we
want.)

Algorithm 1: FINDMIN(A, n)
Require: A sequence of integers A.

1: m = +∞
2: for a in A :
3: if a is smaller than m :
4: m = a
5: return m

Your pseudocode does not have to look exactly like mine; for example,
you could use syntax that feels more familiar to you, such as Java-like
or Haskell-like syntax. The important point is that it be readable and
understandable to someone who knows how to program. That is, your
pseudocode should have enough structure and detail so that a competent
programmer would be able to take it and translate it into working code in a
programming language of their choice.

A binary tree T is either NULL, or else it has a left child T.left, a right
child T.right, and an integer value T.value. Write some pseudocode to

Note you should not assume T is a binary
search tree; that is, there need not be any
relationship between the value at a node and
the values at its children, so the smallest
integer value could be anywhere in the tree.

find the smallest integer value in a binary tree T, or return +∞ if T is null.

Homework 0 (Concept review) 2 Due: 5:00pm, Wednesday, September 4


