Model 1: A theorem about trees

Learning objective: Students will write proofs about graphs.

Theorem 1 (Trees). Let G = (V, E) be a graph with $|V| = n \ge 1$. Any two of the following imply the *third*:

- 1. *G* is connected.
- 2. *G* is acyclic.
- 3. G has n 1 edges.
- 1 (Review) From the previous activity, what is the definition of a tree?
- 2 How does the given theorem relate to the definition of a tree?
- 3 The theorem implies that there are two other alternative, yet equivalent, ways we could have defined trees. What are they?

We will take each pair of statements in turn and show that they imply the third. Fill in the blanks to complete the following proofs! Note that the size of a blank does not necessarily correspond to the amount of stuff you should write in it.

Lemma 2. (1), (2) \implies (3). That is: let G = (V, E) be a graph with

 $|V| = n \ge 1.$ If ______, and ______, then ______.

which is	and	
must have	<i>n</i>) holds for all $n \ge 1$.	
The proof is by		
• The base case is when		
In this case, <i>G</i> must be		
which indeed		
• For the induction step,	suppose $P(k)$ holds for some	ne $k \ge 1$. That is,
suppose that any graph	۱ with	vertices
which is		
must have		<u> </u>
Then we wish to show	P(k+1), that is, any graph	. with
vertices which is conne	cted and acyclic must have	·
So, let G be a graph wi	th	vertices which is
	and	
We claim that G must h	have some vertex which is a	leaf, that is, a
vertex of degree		′
which we can show as	follows:	
- <i>G</i> cannot have any v	rertices of degree	
because		
- It also cannot be the	case that every vertex of <i>G</i>	has degree \geq
If they did, then we	could find a ł	by starting at any
	œ	O BY

Proof. Let P(n) denote the statement "Any graph *G* with *n* vertices

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

vertex and walking along edges randomly until;
we would never get stuck because
However, this is impossible because we assumed
Hence, <i>G</i> must have some vertex which If we delete this vertex along with the edge adjacent to it, it results
in a graph G' with only vertices;
we note that <i>G</i> ′ is still
because
and also
because Hence we may apply the inductive hypothesis to conclude that G'
Adding the deleted vertex and edge
back to G' shows that G,
which is what we wanted to show.
Let's do one more! (You will do the third on your HW.)
Lemma 3. (2), (3) \implies (1), that is,
<i>Proof.</i> This proof uses a <i>counting argument</i> : we will show what we wish to show by counting things in multiple ways. Let <i>c</i> denote the number of connected components of <i>G</i> . We want
to show that Number the components of <i>G</i> from $1c$, and say that component <i>i</i> has n_i vertices. Then
c

$$\sum_{i=1}^{c} n_i = \underline{\qquad}$$

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

because	

Each connected component is by definition a graph;

clude that component *i* ______Adding these up, the total number of edges in *G* is

$$|E| = \sum_{i=1}^{c} \underline{\qquad} = \underline{\qquad}$$

But we already assumed the number of edges in *G* is _____,

and hence ______ as desired.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.