
Algorithms: Some Proofs about Trees

Learning objective: Students will
write proofs about graphs.Model 1: A theorem about trees

Theorem 1 (Trees). Let G = (V, E) be a graph with |V| = n ≥ 1. Any two of the following imply the
third:

1. G is connected.

2. G is acyclic.

3. G has n − 1 edges.

1 (Review) From the previous activity, what is the definition of a
tree?

2 How does the given theorem relate to the definition of a tree?

3 The theorem implies that there are two other alternative, yet equiv-
alent, ways we could have defined trees. What are they?

We will take each pair of statements in turn and show that they
imply the third. Fill in the blanks to complete the following proofs!
Note that the size of a blank does not necessarily correspond to the
amount of stuff you should write in it.

Lemma 2. (1), (2) =⇒ (3). That is: let G = (V, E) be a graph with

|V| = n ≥ 1. If

and ,

then .



algorithms: some proofs about trees 2

Proof. Let P(n) denote the statement “Any graph G with n vertices

which is and

must have .”
We wish to show that P(n) holds for all n ≥ 1.

The proof is by .

• The base case is when .

In this case, G must be

which indeed .

• For the induction step, suppose P(k) holds for some k ≥ 1. That is,

suppose that any graph with vertices

which is

must have .

Then we wish to show P(k + 1), that is, any graph with

vertices which is connected and acyclic must have .

So, let G be a graph with vertices which is

and .
We claim that G must have some vertex which is a leaf, that is, a

vertex of degree ,

which we can show as follows:

– G cannot have any vertices of degree

because .

– It also cannot be the case that every vertex of G has degree ≥ .

If they did, then we could find a by starting at any
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vertex and walking along edges randomly until ;

we would never get stuck because .

However, this is impossible because we assumed .

Hence, G must have some vertex which .
If we delete this vertex along with the edge adjacent to it, it results

in a graph G′ with only vertices;

we note that G′ is still

because

and also

because .
Hence we may apply the inductive hypothesis to conclude that G′

. Adding the deleted vertex and edge

back to G′ shows that G ,
which is what we wanted to show.

Let’s do one more! (You will do the third on your HW.)

Lemma 3. (2), (3) =⇒ (1), that is,

.

Proof. This proof uses a counting argument: we will show what we
wish to show by counting things in multiple ways.

Let c denote the number of connected components of G. We want

to show that .
Number the components of G from 1 . . . c, and say that component

i has ni vertices. Then

c

∑
i=1

ni =
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because .

Each connected component is by definition a graph;

each component must also be
since we assumed that G is. Hence we may apply Lemma 2 to con-

clude that component i .
Adding these up, the total number of edges in G is

|E| =
c

∑
i=1

=

But we already assumed the number of edges in G is ,

and hence as desired.
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