
Algorithms: Some Proofs about Trees (Key)

Model 1: A theorem about trees

Theorem 1 (Trees). Let G = (V, E) be a graph with |V| = n ≥ 1. Any two of the following imply the
third:

1. G is connected.

2. G is acyclic.

3. G has n − 1 edges.

Lemma 2. (1), (2) =⇒ (3). That is: let G = (V, E) be a graph with
|V| = n ≥ 1. If G is connected and acyclic, then G has n − 1 edges.

Proof. Let P(n) denote the statement “Any graph G with n vertices
which is connected and acyclic must have n − 1 edges.” We wish to
show that P(n) holds for all n ≥ 1.

The proof is by induction on n.

• The base case is when n = 1. In this case, G is just a single vertex,
so it is indeed connected, acyclic, and has 0 edges.

• For the induction step, suppose P(k) holds for some k ≥ 1. That
is, suppose that any graph with k vertices which is connected and
acyclic must have k − 1 edges. Then we wish to show P(k + 1), that
is, any graph with k + 1 vertices which is connected and acyclic
must have k edges.

So, let G be a graph with k + 1 vertices which is connected and
acyclic. We claim that G must have some vertex which is a leaf,
that is, a vertex of degree 1, which we can show as follows:

– G cannot have any vertices of degree 0, because it is connected
(and has at least two vertices).

– It also cannot be the case that every vertex of G has degree
≥ 2. If they did, then we could find a cycle by starting at any
vertex and walking along edges randomly until encountering a
repeated vertex; we would never get stuck because every vertex
has degree ≥ 2, that is, if we come in along one edge there must
always be a different edge along which we can leave. However,
this is impossible because we assumed G is acyclic.
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Hence, G must have some vertex which is a leaf. If we delete this
vertex along with the edge adjacent to it, it results in a graph G′

with only k vertices; we note that G′ is still connected (because G
was connected and we deleted a leaf) and also acyclic (because
deleting something from an acyclic graph cannot create a cycle).
Hence we may apply the inductive hypothesis to conclude that G′

has k − 1 edges. Adding the deleted vertex and edge back to G′

shows that G has k edges, which is what we wanted to show.

Lemma 3. (2), (3) =⇒ (1), that is, any acyclic graph with n vertices and
n − 1 edges must be connected.

Proof. This proof uses a counting argument: we will show what we
wish to show by counting things in multiple ways.

Let c denote the number of connected components of G. We want
to show that c = 1.

Number the components of G from 1 . . . c, and say that component
i has ni vertices. Then

c

∑
i=1

ni = n

because adding up the number of vertices in each component gives
the total number of vertices. Each connected component is by defi-
nition a connected graph; each component must also be acyclic since
we assumed that G is acyclic. Hence we may apply Lemma 2 to con-
clude that component i has ni − 1 edges. Adding these up, the total
number of edges in G is

|E| =
c

∑
i=1

(ni − 1) =

(
c

∑
i=1

ni

)
−
(

c

∑
i=1

1

)
= n − c.

But we already assumed the number of edges in G is n − 1, and
hence c = 1 as desired.
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