
Dynamic programming example: high- and low-
stress jobs
CSCI 382, Algorithms

October 28, 2019

Consider the following table composed of n weeks where each week i
has low stress job that pays Li and a high stress job that pays Hi.

WEEK 1 2 3 · · · n
low stress L1 L2 L3 · · · Ln

high stress H1 H2 H3 · · · Hn

Each week you are allowed to pick either a low stress job or a high
stress job; however, picking a high stress job at week i means that
you must take the week before (i.e. week i − 1) off. Your goal is to
maximize your total income. Let’s suppose that you are allowed
to take the high-stress job in week 1 (it doesn’t change the overall
solution much either way, only the base case).

Step 1: A Recurrence

Consider different ways of splitting up or restricting the overall
problem into subproblems or subcases, and come up with a recur-
rence.

The key to solving this problem is to consider subcases of the
problem corresponding to working only up to week i. Define OPT(i)
as the maximum amount you can get for working weeks 1 . . . i only.
Then we can write down a recurrence for OPT:

OPT(0) = 0

OPT(1) = max(L1, H1)

OPT(i) = max

Li + OPT(i − 1)

Hi + OPT(i − 2).

Step 2: Induction

Prove the recurrence correct by induction.
Let’s prove that OPT(i) is indeed the most money we could possi-

bly making by working only weeks 1 . . . i.

Proof. By (strong) induction on i.

• Base cases:

dynamic programming example: high- and low-stress jobs 2

– OPT(0) = 0 since we don’t make any money for working 0
weeks.

– OPT(1) = max(L1, H1), since if we’re only working 1 week, the
best we can do is to just take the better-paying job.

Note that we need two base cases because in the recursive case, we
define OPT(i) in terms of both OPT(i − 1) and OPT(i − 2).

• In the inductive case, let i ≥ 2 and suppose that for all k < i,
OPT(k) is indeed the most money we can possibly make working
weeks 1 . . . k. Then we must show that OPT(i) is also correct, that
is, it is the optimal amount for working weeks 1 . . . i.

Note first that if we didn’t work week i, we could always increase
our profit by just taking the low-stress job in week i—so taking
the last week off is never the optimal schedule. Thus, we should
definitely work the last week, and our only decision is between
taking the high-stress job or low-stress job. If we work the low-
stress job in week i, we get Li for that job, and we should do the
best we possibly can for the previous i − 1 weeks, which by the
IH is OPT(i − 1). If we work the high-stress job in week i for an
income of Hi, we have to take week i − 1 off, but we should then
do the best we can in the previous i − 2 weeks, which again by the
IH is OPT(i − 2). Since these are our only two choices, the best we
can possibly do is just the maximum of the total we would get in
either case.

SDG

This is a typical pattern: (1) consider subproblems of the original
problem; (2) write down a recurrence for computing the optimal
value for each subproblem; (3) prove it is correct by induction.

We could have also considered a divide and conquer approach:
i.e. split the weeks in half, find the best schedule for each half re-
cursively, . . . and then what? The problem is that the halves are not
independent. The best schedule for each of the halves in isolation
might not give us the best overall schedule—in particular it might
not be allowed, if the best schedule for the second half starts with a
high-stress job.

Step 3: Memoize

If there are overlapping subproblems, memoize.
If none of the recursive subproblems will overlap, rejoice! In that

case you just have a divide-and-conquer algorithm. For example, the

dynamic programming example: high- and low-stress jobs 3

recursive calls of mergesort will never overlap, becuase the recursive
calls are always on completely disjoint parts of the input list.

In this case, however, we can see that naively computing OPT(i)
using recursion would lead to many values of OPT being redun-
dantly computed over and over—in fact, it has the same recursion
pattern as the Fibonacci numbers.

In this case, we can store the values of OPT(i) in an array of length
n + 1; since each OPT(i) depends only on the previous two, we can
fill in the array from index 0 up to index n. Here is how we might
implement it in Python:

low, high are lists of weekly salaries for low- and

high-stress job, respectively.

def best_income(low, high):

n = len(low)

Make low and high 1-indexed by adding dummy values to the

beginning. This works much more nicely since we want opt[i] =

maximum for working i weeks, and opt[0] = 0 is a natural base

case, so we want to have the weeks be 1-indexed. (Adding extra

"padding" elements to arrays to make room for base cases is a

common technique with DP problems.)

low = [0] + low

high = [0] + high

Initialize opt[0..n] with all zeros.

opt = [0] * (n+1)

The first base case, opt[0] = 0, is already taken care of.

For opt[1], just take the higher of the two jobs.

opt[1] = max(low[1], high[1])

Now loop through remaining weeks.

for i in range(2, n+1):

How much could we make taking the low or high stress job?

low_total = low[i] + opt[i-1]

high_total = high[i] + opt[i-2]

The optimal for weeks 1..i is the higher of the two

opt[i] = max(low_total, high_total)

dynamic programming example: high- and low-stress jobs 4

return opt[n]

Example:

>>> best_income([2,2,1,7,5,20,3,19,10,13], [1,5,10,100,23,20,5,21,30,30])

182

Step 4: Remember Your Choices!

To compute the actual optimal solution instead of just the optimal
value, save the choices made at each step.

This solution tells us how much money we can make, but it doesn’t
actually tell us which job we should take each week. However, it is
not too hard to modify our solution to do this as well. The key obser-
vation is that during the algorithm, for each i, taking the max of two
values corresponds to deciding which option would be better—to
take the low- or high-stress job at week i. So we can just add another
array, JOBS, to keep track of which decision leads to the best outcome
at each week—that is, JOBS[i] records whether we should pick the
low- or high-stress job at week i in order to maximize our income if
we only work weeks 1 . . . i.

Note that JOBS does not directly tell us which jobs we should
actually take to get the most money overall. For example, suppose
JOBS[3] contains H. This means that if we only worked the first three
weeks, then we should take the high-stress job in week 3. However, it
may turn out that the best schedule overall has us working the low-
stress job or taking week 3 off.

So, how do we actually reconstruct the optimal schedule for weeks
1 . . . n from JOBS? We just start at week n and work backwards (be-
cause this mirrors the recursive structure of OPT):

• If JOBS[n] = L, then we take the low-stress job in week n, and
continue by looking at JOBS[n − 1] to see what we should do the
week before.

• If JOBS[n] = H, then we take the high-stress job in week n, take
week n − 1 off, and continue by looking at JOBS[n − 2].

We continue this process until reaching week 1.
Here is an enhanced version of the Python solution which com-

putes the optimal schedule along with the optimal income:

def best_income(low, high):

n = len(low)

dynamic programming example: high- and low-stress jobs 5

low = [0] + low

high = [0] + high

Initialize an array of booleans to keep track of whether the

optimal choice is to take the high-stress job at week i (if we

only work weeks 1..i).

take_high_job = [False] * (n+1)

opt = [0] * (n+1)

opt[1] = max(low[1], high[1])

We should take the high-stress job at week 1 iff it pays more.

take_high_job[1] = (high[1] > low[1])

for i in range(2, n+1):

low_total = low[i] + opt[i-1]

high_total = high[i] + opt[i-2]

opt[i] = max(low_total, high_total)

Record which choice produced the higher total

take_high_job[i] = high_total > low_total

Now, to produce a work schedule, work backwards from the end

Start at week n

w = n

schedule = []

while w > 0:

If we should take the high-stress job at week w, schedule it

and a week off, and proceed to look at week w-2 next

if take_high_job[w]:

schedule = ['off', 'HI'] + schedule

w -= 2

Otherwise schedule the low-stress job and look at week w-1 next

else:

schedule = ['LO'] + schedule

w -= 1

return (opt[n], schedule)

Example:

dynamic programming example: high- and low-stress jobs 6

>>> best_income([2,2,1,7,5,20,3,19,10,13], [1,5,10,100,23,20,5,21,30,30])

(182, ['off', 'HI', 'off', 'HI', 'LO', 'LO', 'LO', 'LO', 'off', 'HI'])

	Step 1: A Recurrence
	Step 2: Induction
	Step 3: Memoize
	Step 4: Remember Your Choices!

