
CSCI 365 Problem Set 10: Lambda Calculus
Due Friday, 19 April 2024

Specification

To receive credit for this problem set:

• Complete at least 9 out of 13 exercises.

• Submit a text file with the definitions of your lambda calculus
terms, in a format suitable for loading into the lambda calcu-
lus evaluator (i.e. the output of running save filename.lc from
within the lambda calculus evaluator).

• Optionally, submit a PDF with your response to exercise 13.

Instructions

While working on this problem set you should use the command-line
λ-calculus interpreter, which is available from the course website.
Download and unzip, then execute stack run at a command prompt
from within the unzipped directory. Please try it early and let me
know if you have trouble getting it installed!

Note that files bool.lc and nat.lc are available with some of the
definitions for Booleans and natural numbers that we went over in
class.

If you wish to typeset any lambda calculus terms in LATEX (though
this is not required), you can use the following commands:

\newcommand{\lam}[2]{\ensuremath{\lambda #1. \, #2}}

\newcommand{\app}[2]{\ensuremath{#1 \; #2}}

For example,
\lam{x}{\lam{y}{\app{x}{y}}}

produces
λx. λy. x y.

These commands ensure proper spacing after the period of a λ and
between terms in an application.

Natural numbers

Recall from lecture that we can represent natural numbers in the
λ-calculus by their Church encoding, that is, the natural number n is
represented by the λ-calculus term

λs. λz. s (s . . . (s z))



csci 365 problem set 10: lambda calculus 2

where the s is repeated n times. In other words, a natural number is
represented by its own fold, that is, a function which takes as arguments
a function s and starting value z, and applies s to z a certain number
of times.

We will abbreviate Church-encoded natural numbers as nλ. For
example,

3λ = λs. λz. s (s (s z)).
In order to test your natural number
functions in the λ-calculus evaluator,
you will want to evaluate things like,
e.g., plus two three S Z instead of
just plus two three. The reason is
that reduction gets “stuck” when the
outermost term constructor is a λ.
In order to “fully reduce” a Church-
encoded number like plus two three,
you can apply it to some arguments, in
this case, just two free variables S and Z

to stand in for successor and zero.

Exercise 1 Define a λ-calculus term exp that exponentiates Church
numerals, that is,

exp mλ nλ ≡ (mn)λ.

Exercise 2 Define a λ-calculus term iszero that decides whether a
Church numeral is zero. That is, when applied to a Church numeral,
it should evaluate to an appropriate Church-encoded boolean.

Exercise 3 Now define iseven, which tests whether a Church nu-
meral is even.

Church lists

Exercise 4 Define λ-calculus terms nil and cons which represent the Remember that we will encode lists as
their own folds! You may find it helpful
to write out the recipe in Haskell first.

constructors for (Church-encoded) lists.

Exercise 5 Define a λ-calculus term sum such that, for example,

sum (cons 3λ (cons 1λ (cons 4λ nil))) ≡ 8λ.

Exercise 6 Define a λ-calculus term filter which works similarly to
Haskell’s standard filter function.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 10: lambda calculus 3

Church pairs and subtraction

Exercise 7 Define λ-calculus terms pair, fst, and snd such that

Hint:fst (pair x y) ≡ x

(and similarly for snd).

Exercise 8 Define a λ-calculus term pred such that when n is posi- This problem is tricky! If you are stuck,
feel free to ask me for a hint. Do not try
to find hints online.

tive, pred applied to nλ is equivalent to (n − 1)λ (pred applied to zero
can just yield zero).

Exercise 9 Now define a λ-calculus term sub that subtracts Church
numerals (truncating at zero in the case of subtracting a larger num-
ber from a smaller).

Exercise 10 Define a λ-calculus term gte that tests whether one
Church numeral is greater than or equal to another. That is, for ex-
ample,

gte 5λ 4λ ≡ true.

Recursion and the Y combinator

Watch this video lecture to learn about fix / the Y combinator,
which allows us to encode arbitrary recursion in the λ-calculus:
https://www.youtube.com/watch?v=tNhTu7uRKfY

Exercise 11 Using the Y combinator, define a λ-calculus term
factorial which computes the factorial of any Church numeral.

Exercise 12 Look up the Ackermann function and encode it as a λ-
calculus term, using the Y combinator.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

What is the fold for (a,b)? Think of it as having a single constructor Pair :: a -> b -> (a,b).
https://www.youtube.com/watch?v=tNhTu7uRKfY
http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 10: lambda calculus 4

Further Exploration

Exercise 13 Take a look at An Unsolvable Problem of Elementary Num-
ber Theory by Alonzo Church1, available from https://www.jstor. 1 Alonzo Church. American Journal

of Mathematics, Vol. 58, No. 2 (Apr.,
1936), pp. 345–363

org/stable/2371045. This was not the very first paper to introduce
the λ-calculus, but it is one of the first where the λ-calculus is more
or less recognizable as we use it today.

Skim through the beginning of the paper and either:

• Read section 1 and footnote 3, and explain the significance of
footnote 3. (Note also that Turing’s paper introducing the Turing
Machine—https://www.cs.virginia.edu/~robins/Turing_Paper_

1936.pdf—was published later in the same year, 1936.)

• Or, read section 2 and explain how Church’s notation and oper-
ations I and II correspond to things we have discussed in class.
(Church’s operation III is called η-conversion, which we did not
discuss.)

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

https://www.jstor.org/stable/2371045
https://www.jstor.org/stable/2371045
https://www.jstor.org/stable/2371045
https://www.jstor.org/stable/2371045
https://www.jstor.org/stable/2371045
https://www.jstor.org/stable/2371045
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
http://creativecommons.org/licenses/by/4.0/

	Specification
	Instructions
	Natural numbers
	Church lists
	Church pairs and subtraction
	Recursion and the Y combinator
	Further Exploration

