
CSCI 365 Problem Set 7: Type Classes & Monoids
due Wednesday, 13 March 2024

Specification

To receive credit for this problem set:

• Complete at least 10 out of 13 exercises.

• Submit a .zip or .tgz file containing all the files necessary for
running the code (including the all the files provided in the skele-
ton package as well as any additional files you created).

• Any code you write must adhere to the Haskell style guide linked
from the course web page.

Haskell code should be submitted in one or more .hs files. Written
exercises may be submitted either as a PDF, or as comments in one of
the .hs files.

The First Word Processor

As everyone knows, Charles Dickens was paid by the word.1 What 1 Actually, this is a myth.

most people don’t know, however, is the story of you, the trusty
programming assistant to the great author.

In your capacity as Dickens’s assistant, you program and oper-
ate the steam-powered Word Processing Engine which was given to
him as a thoughtful birthday gift from his friend Charles Babbage.2

2 Unlike the rest of this story, the fact
that Dickens and Babbage were friends
is 100% true. If you don’t believe it,
just do a Google search for “Dickens
Babbage”.

To be helpful, you are developing a primitive word processor the
author can use not only to facilitate his craft, but also to ease the ac-
counting.3 What you have done is build a word processor that keeps

3 Of course, all of your programming
is actually done by assembling steam
pipes and valves and shafts and gears
into machines which perform the
desired computations; but as a mental
shortcut you have taken to thinking in
terms of a higher-order lazy functional
programming language and compiling
down to steam and gears as necessary.
In this assignment we will stick to the
purely mental world, but of course you
should keep in mind that we could
compile everything into Steam-Powered
Engines if we wanted to.



csci 365 problem set 7: type classes & monoids 2

track of the total number of words in a document while it is being
edited. This is really a great help to Mr. Dickens as the publishers use
this score to determine payment, but you are not satisfied with the
performance of the system and have decided to improve it.

Getting Started

Download the provided skeleton code from https://hendrix-cs.

github.io/csci365/problem-sets/07-monoids/dickens-editor.tgz

and unpack it somewhere. Inside the package you should find the
following:

• dickens-editor.cabal is a Cabal package file describing this
Haskell package. Edit the author, maintainer, and copyright

fields with your name and email.

• LICENSE describes the license under which this package can be
distrubuted. At the very least, add your name to the copyright no-
tice in this file. The BSD 3-clause license is common in the Haskell
open-source community, but you can also use a different license if
you wish.

• carol.txt contains the entire text of “A Christmas Carol” by
Charles Dickens. You are welcome to add other texts to try out
as well. Check out Project Gutenberg at https:

//www.gutenberg.org/ for a great
source of works in the public domain.• There should also be some .hs files in the lib subdirectory, and

one in app, which will be explained throughout the rest of the
problem set.

Editors and Buffers

You have a working user interface for the word processor imple-
mented in the file lib/Editor.hs. The Editor module defines func-
tionality for working with documents implementing the Buffer type
class found in lib/Buffer.hs. Take a look at Buffer.hs to see the op-
erations that a document representation must support to work with
the Editor module. The intention of this design is to separate the
front-end interface from the back-end representation, with the type
class intermediating the two. This allows for the easy swapping of
different document representation types without having to change
the Editor module.

Try out the editor by typing

cabal run stringbufeditor

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

https://hendrix-cs.github.io/csci365/problem-sets/07-monoids/dickens-editor.tgz
https://hendrix-cs.github.io/csci365/problem-sets/07-monoids/dickens-editor.tgz
https://www.gutenberg.org/
https://www.gutenberg.org/
http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 7: type classes & monoids 3

at a command line (make sure you are in the directory with the
.cabal file first). The editor interface is as follows:

• v — view the current location in the document

• n — move to the next line

• p — move to the previous line

• l — load a file into the editor

• e — edit the current line

• q — quit

• ? — show this list of commands

To move to a specific line, enter the line number you wish to nav-
igate to at the prompt. The display shows you up to two preceding
and two following lines in the document surrounding the current
line, which is indicated by an asterisk. The prompt itself indicates the
current value of the entire document.

The first attempt at a word processor back-end was to use a single
String to represent the entire document. You can see the Buffer

instance for String in the file lib/StringBuffer.hs. Performance
isn’t great because reporting the document score requires traversing
every single character in the document every time the score is shown!
Mr. Dickens demonstrates the performance issues with the following
(imaginary) editor session:

$ runhaskell StringBufEditor.hs

33> n

0: This buffer is for notes you don’t want to save, and for

*1: evaluation of steam valve coefficients.

2: To load a different file, type the character L followed

3: by the name of the file.

33> l carol.txt

31559> 3640

3638:

3639: "An intelligent boy!" said Scrooge. "A remarkable boy!

*3640: Do you know whether they’ve sold the prize Turkey that

3641: was hanging up there?--Not the little prize Turkey: the

3642: big one?"

31559> e

Replace line 3640: Do you know whether they’ve sold the prize Goose that

31559> n

3639: "An intelligent boy!" said Scrooge. "A remarkable boy!

3640: Do you know whether they’ve sold the prize Goose that

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 7: type classes & monoids 4

*3641: was hanging up there?--Not the little prize Turkey: the

3642: big one?"

3643:

31559> e

Replace line 3641: was hanging up there?--Not the little one: the

31558> v

3639: "An intelligent boy!" said Scrooge. "A remarkable boy!

3640: Do you know whether they’ve sold the prize Goose that

*3641: was hanging up there?--Not the little one: the

3642: big one?"

3643:

31559> q

Sure enough, there is a small delay every time the prompt is
shown.

You have chosen to address the issue by implementing a light-
weight, tree-like structure, both for holding the data and caching the
metadata. This data structure is referred to as a join-list. A data type
definition for such a data structure might look like this:

data JoinListBasic a where

Empty :: JoinListBasic a

Single :: a -> JoinListBasic a

Append :: JoinListBasic a -> JoinListBasic a -> JoinListBasic a

The intent of this data structure is to directly represent append
operations as data constructors. This has the advantage of making
append an O(1) operation: sticking two JoinLists together simply
involves applying the Append data constructor.

Such a structure makes sense for text editing applications as it
provides a way of breaking the document data into pieces that can
be processed individually, rather than having to always traverse the
entire document. This structure is also what you will be annotating
with the metadata you want to track.

Monoidally Annotated Join-Lists

The JoinList definition that we will actually use for this assignment
is

data JoinList m a where

Empty :: JoinList m a

Single :: m -> a -> JoinList m a

Append :: m -> JoinList m a -> JoinList m a -> JoinList m a

deriving (Eq, Show)

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 7: type classes & monoids 5

This definition has been provided for you in lib/JoinList.hs.
The m parameter will be used to track monoidal annotations to the

structure. The idea is that the annotation at the root of a JoinList

will always be equal to the combination of all the annotations on
the Single nodes (according to whatever notion of “combining” is
defined for the monoid in question). In other words:

• Empty nodes do not explicitly store an annotation, but we consider
them to have an annotation of mempty (that is, the identity element
for the given monoid).

• Single nodes store some m value corresponding to the stored data
of type a.

• Append nodes just store the combination of the m values in their
children.

For example,

Append (Product 210)

(Append (Product 30)

(Single (Product 5) ’y’)

(Append (Product 6)

(Single (Product 2) ’e’)

(Single (Product 3) ’a’)))

(Single (Product 7) ’h’)

is a join-list storing four values: the character ’y’ with annotation
5, the character ’e’ with annotation 2, ’a’ with annotation 3, and
’h’ with annotation 7. (See Figure 1 for a graphical representation of
the same structure.) Since the multiplicative monoid is being used,
each Append node stores the product of all the annotations below it.
The point of doing this is that all the subcomputations needed to
compute the product of all the annotations in the join-list are cached.
If we now change one of the annotations, say, the annotation on ’y’,
we need only recompute the annotations on nodes above it in the
tree. In particular, in this example we don’t need to descend into the
subtree containing ’e’ and ’a’, since we have cached the fact that
their product is 6. This means that for balanced join-lists, it takes
only O(log n) time to rebuild the annotations after making an edit.

'h'

7

'a'

3

'e'

2

6

'y'

5

30

210

Figure 1: A sample join-list annotated
with products

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 7: type classes & monoids 6

Exercise 1 We first consider how to write some simple operations
on these JoinLists. Perhaps the most important operation we will
consider is how to append two JoinLists. Previously, we said that
the point of JoinLists is to represent append operations as data,
but what about the annotations? Edit lib/JoinList.hs and write
an append function for JoinLists that yields a new JoinList whose
monoidal annotation is derived from those of the two arguments.

infixr 5 +++

(+++) :: Monoid m => JoinList m a -> JoinList m a -> JoinList m a

“infixr 5 +++” declares (+++) to be
right associative with precedence level
5, the same as (++).

You may find it helpful to implement a helper function

tag :: Monoid m => JoinList m a -> m

which gets the annotation at the root of a JoinList.

Exercise 2 We will need to be able to convert a JoinList to a regular
list. Write a function

jlToList :: JoinList m a -> [a]

which ignores the m annotations and concatenates all the a values at Note: the straightforward way to do this
takes O(n) on a balanced JoinList but
can take up to O(n2) if the JoinList

is imbalanced. If you wish, you can
use the technique from Exercise 7 on
Problem Set 4 to write a version which
runs in worst-case linear time.

the leaves of a JoinList into a single list.

Exercise 3 We will also want to be able to convert in the other direc-
tion, from a list into a JoinList. Write a function

jlFromList :: Monoid m => (a -> m) -> [a] -> JoinList m a

which takes as arguments a list and a function for extracting a suit-
able m value for each a, and builds a balanced JoinList containing all Hint: use divide and conquer. By “bal-

anced” we just mean that each Append

node should have approximately the
same number of elements on both sides.

the elements of the list in order.

Exercise 4 The first annotation to try out is one for fast indexing into
a JoinList. The idea is to cache the size (number of data elements) of
each subtree. This can then be used at each step to determine if the
desired index is in the left or the right branch.

I have provided lib/Sized.hs that defines the Size type, which is
simply a newtype wrapper around an Int.

Add import Sized to the top of lib/JoinList.hs (just after the
module declaration) and then implement a function

indexJ :: Int -> JoinList Size a -> Maybe a

indexJ finds the JoinList element at the specified index. If the in-
dex is out of bounds, the function returns Nothing. By an index in
a JoinList we mean the index in the list that it represents. That is,
consider a safe list indexing function

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 7: type classes & monoids 7

(!!?) :: [a] -> Int -> Maybe a

[] !!? _ = Nothing
_ !!? i | i < 0 = Nothing

(x:xs) !!? 0 = Just x

(x:xs) !!? i = xs !!? (i-1)

which returns Just the ith element in a list (starting at zero) if such
an element exists, or Nothing otherwise. Then for any index i and
join-list jl, it should be the case that

(indexJ i jl) == (jlToList jl !!? i)

That is, calling indexJ on a join-list is the same as first convert-
ing the join-list to a list and then indexing into the list. The point, of
course, is that indexJ can be more efficient (O(log n) versus O(n),
assuming a balanced join-list), because it gets to use the size annota-
tions to throw away whole parts of the tree at once, whereas the list
indexing operation has to walk over every element.

Hint: when considering an Append node, look at the Size anno-
tations on its two children. By comparing the desired index to the
sizes, you should be able to figure out whether to descend into the
left or right subtree. Also note that you can use getSize to convert a
Size into an Int.

Exercise 5 Implement functions

dropJ :: Int -> JoinList Size a -> JoinList Size a

takeJ :: Int -> JoinList Size a -> JoinList Size a

which are analogous to the standard drop and take functions on lists.
Formally, dropJ and takeJ should behave in such a way that

jlToList . dropJ n == drop n . jlToList

jlToList . takeJ n == take n . jlToList

Ensure that your function definitions use the Size annotations to
make smart decisions about how to descend into the JoinList tree,
similarly to indexJ.

Hint: you can either define dropJ and takeJ individually, or you
can try implementing a single function

splitAtJ :: Int -> JoinList Size a -> (JoinList Size a, JoinList Size a)

and then defining takeJ and dropJ in terms of splitAtJ.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 7: type classes & monoids 8

Exercise 6 We are going to want to be able to annotate JoinLists
with more than just a Size; to this end, lib/Sized.hs also provides a
Sized type class which provides a method for obtaining a Size from
some value.

Generalize indexJ, dropJ, and takeJ so that they work with
JoinLists with any Sized annotation. Instead of directly expect-
ing a Size value as an annotation, they can call the size function
on annotations to get a Size. In fact, if you make a Sized instance
for JoinList m a (as long as there is a Sized m instance) you can di-
rectly call size on any JoinList (for example, the two children at an
Append node).

The types should now be:

indexJ :: (Monoid m, Sized m) => Int -> JoinList m a -> Maybe a

dropJ :: (Monoid m, Sized m) => Int -> JoinList m a -> JoinList m a

takeJ :: (Monoid m, Sized m) => Int -> JoinList m a -> JoinList m a

Since Size itself is an instance of Sized, these should continue
to work with JoinList Size a. However, the point is that they
will now also work with JoinLists with multiple annotations, like
JoinList (Score, Size) a, which we turn to next.

Exercise 7 Now you need to implement an annotation to keep track
of word count. Create a new module in lib/WordCount.hs and
add it to the exposed-modules list in the .cabal file. WordCount.hs
should define a WordCount type, Semigroup and Monoid instances for
WordCount, and a function wordCount :: String -> WordCount to
count the number of words in a given String.

To test that you have everything working, add the line import WordCount

to the import section of your JoinList module, and write the follow-
ing function to create a singleton JoinList annotated with a word
count:

countedSingle :: String -> JoinList WordCount String

Now you should be able to type cabal repl at the command line
to load up the project in GHCi, and do things like the following:

ghci> :m +JoinList

ghci> countedSingle "hello there" +++ countedSingle "haskell!"

Append (WordCount 3)

(Single (WordCount 2) "hello there")

(Single (WordCount 1) "haskell!")

Exercise 8 Finally, combine these two kinds of annotations. As we
saw in class, a pair of monoids is itself a monoid:

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 7: type classes & monoids 9

instance (Semigroup a, Semigroup b) => Semigroup (a,b) where

(a1,b1) <> (a2,b2) = (a1 <> a2, b1 <> b2)

instance (Monoid a, Monoid b) => Monoid (a,b) where

mempty = (mempty, mempty)

This means that join-lists can track more than one type of annotation
at once, in parallel, simply by using a pair type.

Create a new module lib/JoinListBuffer.hs and add it to the
list of exposed-modules in the .cabal file. Using all the functions you
have developed so far in the previous exercises, implement a Buffer

instance for JoinList (WordCount, Size) String. Note that you will probably have
to enable the FlexibleInstances

extension.
Due to the use of the Sized type class, this type should continue to

work with your generalized indexJ, takeJ, and dropJ functions.

Exercise 9 Finally, we can put everything together to make an editor
executable based on JoinList, which should behave identically to the
original StringBuffer-based editor, but much faster.

• Create a new file app/JoinListEditor.hs which is identical to
app/StringBufEditor.hs, except that

– it should import JoinListBuffer instead of StringBuffer, and

– you will have to construct some initial buffer contents of type
JoinList (WordCount, Size) String instead of String. (Hint:
use jlFromList instead of unlines. You may want to write a
helper function of type String -> (WordCount, Size) which
returns a the word count of a String paired with Size 1.)

• Create a new executable section in the .cabal file which is
identical to the existing executable section, except that it is
called joinlisteditor instead of stringbufeditor, and uses
JoinListEditor.hs for main-is instead of StringBufEditor.hs.

You should now be able to test out your editor by executing

cabal run joinlisteditor

at the command line. Verify that the editor demonstration described
in the section “Editors and Buffers” works identically but does not
exhibit delays when showing the prompt.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 7: type classes & monoids 10

Further Exploration

Exercise 10 Mr. Dickens’s publishing company has changed their
minds. Instead of paying him by the word, they have decided to pay
him according to the scoring metric used by the immensely popular
game of ScrabbleTM. You must therefore update your editor imple- ScrabbleTM, of course, was invented in

1842, by Dr. Wilson P. ScrabbleTM.mentation to count Scrabble scores instead of counting words.
Create a new module in lib/Scrabble.hs and add it to the exposed-modules

list in the .cabal file. Scrabble.hs should define a Score type,
Semigroup and Monoid instances for Score, and the following func-
tions:

score :: Char -> Score

scoreString :: String -> Score
Hint for scoreString: take a look at the
standard foldMap function.

The score function should implement the tile scoring values as
shown at http://www.thepixiepit.co.uk/scrabble/rules.html; any
characters not mentioned (punctuation, spaces, etc.) should be given
zero points. scoreString should simply add up the scores for every
character in an entire String.

Exercise 11 Instead of implementing explicit Semigroup and Monoid

instances for WordCount and/or Score, it is possible to get GHC to
write this code for us using the DerivingVia extension, like so:

{-# LANGUAGE DerivingStrategies #-}

{-# LANGUAGE DerivingVia #-}

newtype WordCount = ...

deriving (Eq, Ord, Show)

deriving (Semigroup, Monoid) via Sum Int

Read about this feature at https://ghc.gitlab.haskell.org/ghc/
doc/users_guide/exts/deriving_via.html and explain how this
works.

Exercise 12 Extend the editor with another feature such as text
search or find and replace. Extend the Buffer class with appro-
priate method(s), and implement them for both StringBuffer and
JoinListBuffer, and extend the implementation in lib/Editor.hs

with a new keyboard shortcut that calls the appropriate Buffer meth-
ods.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://www.thepixiepit.co.uk/scrabble/rules.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/deriving_via.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/deriving_via.html
http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 7: type classes & monoids 11

Exercise 13 Read the article “Monoids and Finger Trees” at https://
apfelmus.nfshost.com/articles/monoid-fingertree.html. Explain
how we could use the ideas described there to extend the editor to
always keep track of the location of the lexicographically smallest
word in the entire document, and update in only O(lg n) time every
time the smallest word is edited or removed.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

https://apfelmus.nfshost.com/articles/monoid-fingertree.html
https://apfelmus.nfshost.com/articles/monoid-fingertree.html
http://creativecommons.org/licenses/by/4.0/

	Specification
	The First Word Processor
	Getting Started
	Editors and Buffers
	Monoidally Annotated Join-Lists
	Further Exploration

