
CSCI 365 Problem Set 6: I/O
due Friday, 1 March 2024

Specification

To receive credit for this problem set:

• You must complete at least 8 out of 11 exercises.

• Any code you write must adhere to the Haskell style guide linked
from the course web page.

Haskell code should be submitted in one or more .hs files. Written
exercises may be submitted either as a PDF, or as comments in one of
the .hs files.

Practical I/O

Note that to test any IO action, you can simply enter it at the GHCi
prompt. GHCi has a special case to execute IO actions entered at the
prompt rather than just evaluating them.

Exercise 1 Implement wc :: IO () which behaves somewhat like
the Unix command-line utility wc. It should:

• Prompt the user for a file name

• Print out the number of lines, words, and characters found in the
file.

(It is OK for your program to crash if the file does not exist.) For
example:

Enter a file name: IO.lhs

170 805 5760

Exercise 2 Extend wc from Exercise 1 so that (like the real Unix wc

command) it gets the file name as a command-line argument rather
than by prompting the user. To access command-line arguments, you
can use the getArgs function from the System.Environment module.

To test your wc, you will need to define main = wc, and then run
your program from the command line, like so:

$ runhaskell PS6.hs somefilename.txt



csci 365 problem set 6: i/o 2

(Note the $ denotes a command-line prompt and should not be
typed.) If you have any trouble getting this to work, just ask!

Exercise 3 Extend wc from Exercise 1 so that it does not crash when
given a file that does not exist, but instead prints a suitable error
message. Consult the documentation for the catch function from the
Control.Exception module.

(Note that this exercise and Exercise 2 are independent; you may
complete either one without the other, or both.)

Exercise 4 Implement playGuessNum :: IO () to play guess-the-
number with a human (with the computer in the role of guesser). In
other words, the human should pick a number between 1 and 100

and then the computer should iteratively guess the number, with
the human responding “high”, “low”, or “correct” based on whether
each guess is too high, too low, or correct. Hint: write a recursive
helper function guess :: Int -> Int -> IO () which guesses a
number between its two arguments.

Utilities

For each of the exercises in this section, you are only allowed to use
return, (>>), and (>>=) (or do-notation). In particular you may not
use any other standard library functions.

Exercise 5 Implement mapResult :: (a -> b) -> IO a -> IO b.

Exercise 6 Implement applyIO :: IO (a -> b) -> IO a -> IO b.

Exercise 7 Implement whenIO :: IO Bool -> IO () -> IO ()

which decides whether to run the second computation or not de-
pending on the result of the first computation.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 6: i/o 3

do-notation

Exercise 8 Translate the following code to use do-notation:

foo :: IO ()

foo =

readFile "foo.txt" >>=

(\f -> readFile "bar.txt" >>=

(\b -> writeFile "foobar.txt" (f ++ b) >> putStrLn "Done!"))

Exercise 9 Read the formal definition of do-notation in the Haskell
2010 report: https://www.haskell.org/onlinereport/haskell2010/
haskellch3.html#x8-470003.14 Look particularly at the box labelled
“Translation”, and notice how do-notation is defined via rewrite rules
that show how to incrementally turn do-notation into code without it.

In class, we saw that

do x <- m

ms

is equivalent to m >>= \x -> ms. However, the translation in the
report does not look exactly like this. Explain what is going on with
the ok function defined in the p <- e case of the report, and explain
why it is equivalent to the version from class in the case that p is a
variable (hint: p can actually be any pattern).

Further Exploration

Exercise 10 Skim the introduction and read sections 2, 2.1, and 2.2
of the 1993 paper “Imperative Functional Programming” by Simon
Peyton Jones and Phil Wadler (https://dl.acm.org/doi/pdf/10.
1145/158511.158524).1 1 Peyton Jones, Simon L., and Philip

Wadler. "Imperative functional pro-
gramming." In Proceedings of the
20th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming
Languages, pp. 71-84. 1993.

Write a short (1 or 2 paragraph) response explaining anything
interesting you learned (either technical or historical), how it relates
to what we have covered in class, etc.

Exercise 11 Look up the documentation for the unsafePerformIO

(e.g. via Hoogle), and explain what is “unsafe” about it.
For a good laugh, you should also look at https://hackage.

haskell.org/package/bytestring-0.12.1.0/docs/Data-ByteString-Internal.

html and scroll down to the section titled “Deprecated and unmen-
tionable”.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-470003.14
https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-470003.14
https://dl.acm.org/doi/pdf/10.1145/158511.158524
https://dl.acm.org/doi/pdf/10.1145/158511.158524
https://hackage.haskell.org/package/bytestring-0.12.1.0/docs/Data-ByteString-Internal.html
https://hackage.haskell.org/package/bytestring-0.12.1.0/docs/Data-ByteString-Internal.html
https://hackage.haskell.org/package/bytestring-0.12.1.0/docs/Data-ByteString-Internal.html
http://creativecommons.org/licenses/by/4.0/

	Specification
	Practical I/O
	Utilities
	do-notation
	Further Exploration

