
CSCI 365 Problem Set 5: Higher-Order Functions
and Recursion Patterns
due Friday, 23 February 2024

Specification

To receive credit for this problem set:

• You must complete at least 8 out of 11 exercises.

• Any code you write must adhere to the Haskell style guide linked
from the course web page.

Haskell code should be submitted in one or more .hs files. Written
exercises may be submitted either as a PDF, or as comments in one of
the .hs files.

Idiomatic Haskell

Exercise 1 Here is a list of standard library functions that every
Haskell programmer ought to be familiar with: This list is not exhaustive by any means

but it’s a good starting point!
fst snd max min even odd

flip (.) show read

head last tail init (++) null concat

map foldr concatMap

product sum and or all any length maximum minimum

filter find

iterate repeat replicate cycle take drop splitAt takeWhile dropWhile

reverse sort

zip zipWith unzip

maybe either

Pick three functions from the above list that you are unfamiliar
with. At least one must be a higher-order function. For each function,
do the following:

1. Read the documentation for the function at https://hackage.
haskell.org/package/base/docs/Prelude.html.

2. Write down the function’s type and explain in your own words
what the function does.1 1 For maximum learning, try this: read

the function’s documentation, then put
it aside and do something else for five
minutes. Then try to write down as
much about the function as you can
remember, without peeking (its type, a
description of what it does, etc.). Then
check to see how accurate you were and
whether you missed anything.

3. Give an example expression which uses the function.

https://hackage.haskell.org/package/base/docs/Prelude.html
https://hackage.haskell.org/package/base/docs/Prelude.html

csci 365 problem set 5: higher-order functions and recursion patterns 2

Higher-order functions

Exercise 2 Without looking at its implementation in the standard
library, implement the function

takeWhile :: (a -> Bool) -> [a] -> [a]

which returns a prefix of the given list, stopping just before the first
element which does not satisfy the predicate. For example,

• takeWhile (<5) [1..10] = [1, 2, 3, 4]

• takeWhile isLower "camelCase" = "camel"

• takeWhile (>= 0) [1,2,3] = [1,2,3]

• takeWhile (< 0) [1,2,3] = []

Exercise 3 Implement a function

xor :: [Bool] -> Bool

which returns True if and only if there are an odd number of True
values contained in the input list. It does not matter how many False

values the input list contains. For example,

xor [False, True, False] == True

xor [False, True, False, False, True] == False

Your solution must be implemented using foldr, that is, it should
be of the form

xor = foldr ...

Exercise 4 Complete CFP Exercise 10.9 (iter). Bonus points for
using id and (.) in your solution.

Exercise 5 Complete CFP Exercise 11.3 (composeList).

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 365 problem set 5: higher-order functions and recursion patterns 3

Exercise 6 Recall the definition of a binary tree data structure. The http://en.wikipedia.org/wiki/

Binary_treeheight of a binary tree is the length of a path from the root to the
deepest node. For example, the height of a tree with a single node is
0; the height of a tree with three nodes, whose root has two children,
is 1; and so on. A binary tree is balanced if the heights of its left and
right subtrees differ by no more than 1, and its left and right subtrees
are also balanced.

You should use the following data structure to represent binary
trees. Note that each node stores an extra Integer representing the
size (total number of nodes) of the binary tree at that node.

data Tree a = Empty

| Node Integer (Tree a) a (Tree a)

deriving (Show, Eq)

For this exercise, write a function, implemented using foldr,

mkBalancedTree :: [a] -> Tree a

mkBalancedTree = foldr ...

which generates a balanced binary tree from a list of values.
For example, one sample output might be the following, also visu-

alized at right in Figure 1:

D

E

A

G

H

B

CF

I

J

Figure 1: A balanced tree

foldTree "ABCDEFGHIJ" ==

Node 10

(Node 4

(Node 1 Leaf ’F’ Leaf)

’I’

(Node 2 (Node 1 Leaf ’B’ Leaf) ’C’ Leaf))

’J’

(Node 5

(Node 2 (Node 1 Leaf ’A’ Leaf) ’G’ Leaf)

’H’

(Node 2 (Node 1 Leaf ’D’ Leaf) ’E’ Leaf))

Your solution might not place the nodes in the same exact order,
but it should result in a balanced tree, with each subtree having a
correct computed size.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Binary_tree
http://creativecommons.org/licenses/by/4.0/

csci 365 problem set 5: higher-order functions and recursion patterns 4

Wholemeal programming

Exercise 7 Complete CFP Exercise 10.2 (length via map and sum).

Exercise 8 A local maximum of a list is an element of the list which is
strictly greater than both the elements immediately before and after
it. For example, in the list [2,3,4,1,5], the only local maximum is 4,
since it is greater than the elements immediately before and after it (3
and 1). 5 is not a local maximum since there is no element that comes
after it.

Write a function

localMaxima :: [Integer] -> [Integer]

which finds all the local maxima in the input list and returns them in
order. For example:

localMaxima [2,9,5,6,1] == [9,6]

localMaxima [2,3,4,1,5] == [4]

localMaxima [1,2,3,4,5] == []

Exercise 9 Write a function

histogram :: [Integer] -> String

which takes as input a list of Integers between 0 and 9 (inclusive),
and outputs a vertical histogram showing how many of each number
were in the input list. You may assume that the input list does not
contain any numbers less than zero or greater than 9 (that is, it does
not matter what your function does if the input does contain such
numbers). Your output must exactly match the output shown in the
examples below.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 365 problem set 5: higher-order functions and recursion patterns 5

histogram [1,1,1,5] ==

*

*

* *
==========

0123456789

histogram [1,4,5,4,6,6,3,4,2,4,9] ==

*

*

* *

****** *
==========

0123456789

Important note: If you type something like histogram [3,5] at
the ghci prompt, you should see something like this:

" * * \n==========\n0123456789\n"

This is a textual representation of the String output, including \n

escape sequences to indicate newline characters. To actually visualize
the histogram as in the examples above, use putStr, for example,
putStr (histogram [3,5]).

Further Exploration

Exercise 10 Read sections 1–5 of John Backus’s 1977 Turing Award
lecture, Can Programming Be Liberated from the von Neumann Style? The rest of this lecture has lots of cool

stuff in it too; you’re welcome to read
more if you find it interesting, although
beware that it starts getting extremely
hairy about halfway through.

A Functional Style and Its Algebra of Programs, available from http:

//worrydream.com/refs/Backus-CanProgrammingBeLiberated.pdf.
Backus delivered this lecture 45 years ago. In what ways do his

remarks still apply today, and in what ways are they outdated? Give
two specific examples of each.

Also, translate the Innerproduct function, defined in section 5.2,
into Haskell. (You may use the standard transpose function, defined
in the Data.List module.)

Exercise 11 Read at least sections 1–4 of Ralf Hinze’s Functional
Pearl from ICFP 2009, La Tour D’Hanoï,2 which can be found at 2 Ralf Hinze. 2009. Functional pearl:

la tour d’Hanoï. In Proceedings of the
14th ACM SIGPLAN International
Conference on Functional Programming
(ICFP ’09). Association for Computing
Machinery, New York, NY, USA, 3–10.
https://doi.org/10.1145/1596550.1596555

https://www.cs.ox.ac.uk/ralf.hinze/publications/ICFP09.pdf,
and try implementing some of the functions Hinze describes.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://worrydream.com/refs/Backus-CanProgrammingBeLiberated.pdf
http://worrydream.com/refs/Backus-CanProgrammingBeLiberated.pdf
https://www.cs.ox.ac.uk/ralf.hinze/publications/ICFP09.pdf
http://creativecommons.org/licenses/by/4.0/

	Specification
	Idiomatic Haskell
	Higher-order functions
	Wholemeal programming
	Further Exploration

