
CSCI 365 Problem Set 4: Lists
due Friday, 16 February 2024

Specification

To receive credit for this problem set:

• You must complete at least 8 out of 11 exercises.

• Any code you write must adhere to the Haskell style guide linked
from the course web page.

Haskell code should be submitted in one or more .hs files. Written
exercises may be submitted either as a PDF, or as comments in one of
the .hs files.

List comprehensions

Exercise 1 Using a list comprehension, find all the primitive Pythagorean
triples with three positive numbers less than 100. A primitive Pythagorean
triple is a triple (a, b, c) where a2 + b2 = c2, the three numbers do not Hint: to find the greatest common

divisor of three integers you can use
gcd a (gcd b c).

all share a common divisor other than 1, and a < b < c.

Exercise 2 Using a list comprehension, write a function

unique :: Eq a => [a] -> [a]

which returns the list of those elements from the input list which
occur exactly once. For example, It is OK if your function takes O(n2)

time.
unique "hello" = "heo"

unique [1,3,5,3,2,7,2,0,1] = [5,7,0]

unique [1,2,3] = [1,2,3]

unique [5,5,5] = []

Hint: you may find it helpful to write a helper function

count : Eq a => a -> [a] -> Int

which counts how many times the given element occurs in the given
list.



csci 365 problem set 4: lists 2

Exercise 3 Turn the following English descriptions into Haskell
code defining the infinite list of all prime numbers: This is not the most efficient way to

define the infinite list of primes, but it is
probably the simplest.• primes :: [Integer] is defined as the result of sieving the list

[2..].

• The result of sieving a list whose first element is p is defined as
the list which begins with p, and continues with the result of siev-
ing all the numbers from the remainder of the list which are not
divisible by p.

• Sieving the empty list yields the empty list (this case is not strictly
needed since we will only sieve infinite lists, but we include it so
GHC doesn’t yell at us about missing cases).

List processing

Exercise 4 Write a function isSorted :: Ord a => [a] -> Bool

which decides whether or not a list is in sorted order.

Exercise 5 Write functions

rle :: Eq a => [a] -> [(Int,a)]

unrle :: [(Int,a)] -> [a]

which implement run-length encoding. The first function, rle, takes
a list and turns each run of consecutive equal elements into a pair
containing the element and the length of the run. For example,

rle [1,1,1,1,2,2,2,1,1,1] = [(4,1), (3,2), (3,1)]

rle "hello" = [(1,’h’), (1,’e’), (2,’l’), (1,’o’)]

The second function, unrle, should invert rle, that is, it expands a
run-length-encoded list back into the original list. In other words, it
should be the case that unrle . rle = id. Optional challenge question: why is it

not the case that rle . unrle = id?

Exercise 6 Consider the algebraic data type PTree, defined below.

data PTree a where

Leaf :: a -> PTree a

Fork :: PTree a -> PTree a -> PTree a

PTree a values represent binary trees with data stored at the leaves.
Write a function

flatten :: PTree a -> [a]

which returns the list of all the elements stored in the leaves of a
PTree, in order from left to right.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 4: lists 3

Exercise 7 The most straightforward solution to the previous exer-
cise takes quadratic time on trees which are deeply nested to the left.
Write a version of flatten which runs in linear time. Hint: write a
helper function

flattenTrees :: [PTree a] -> [a]

which takes a stack of PTree values (represented as a list) and returns
the list of all their elements in order.

String Processing

Exercise 8 Without looking at its implementation in the standard
library, write a function

lines :: String -> [String]

which splits a string into lines, by breaking at each newline (’\n’)
character. For example,

lines "Hello" = ["Hello"]

lines "Hello\nthere\nworld" = ["Hello", "there", "world"]

lines "Hello\n\n\nthere" = ["Hello", "", "", "there"]

Exercise 9 Without looking at its implementation in the standard
library, write a function

words :: String -> [String]

which splits a string into nonempty words delimited by whitespace.
“Whitespace” includes not only space characters, but also tabs (’\t’)
and newlines (’\n’). To test whether a given character is whitespace,
you are welcome to import the isSpace function from Data.Char.
Unlike with the lines function, multiple consecutive whitespace
characters should not result in any empty words being generated.
Overall it should behave much like .split() in Python. For example:

words "Hello there world" = ["Hello", "there", "world"]

words "Hello there\t \n world " = ["Hello", "there", "world"]

words "Hello" = ["Hello"]

words "" = []

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 4: lists 4

Exercise 10 Write a function

wordList :: String -> [String]

which returns a sorted list of unique words which occur in the in-
put. All words should be converted to lowercase and stripped of any
punctuation (defined for the purposes of this exercise as any charac-
ter other than letters or whitespace). For example,

wordList "I say! I said, \"Hello hello! What did you say?\""

should return

["did","hello","i","said","say","what","you"].

Of course you are welcome to use any functions written previously
on this problem set, functions written in class, or functions you find
in the Haskell standard libraries. Rather than writing one monolithic
function to do everything, try to use simple functions that incre-
mentally transform the input into something one step closer to the
desired output, then chain all these small functions together via func-
tion composition.

Further Exploration

Exercise 11 Read about the TransformListComp language exten-
sion at https://downloads.haskell.org/ghc/latest/docs/users_

guide/exts/generalised_list_comprehensions.html. Play with it Remember that you can enable
language extensions by writing
{-# LANGUAGE ExtensionName #-}

at the very top of your .hs file.

and come up with an interesting example that is different than the
examples shown on the page linked above. Could you have used it to
help on any of the other exercises on this problem set?

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/generalised_list_comprehensions.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/generalised_list_comprehensions.html
http://creativecommons.org/licenses/by/4.0/

	Specification
	List comprehensions
	List processing
	String Processing
	Further Exploration

