
CSCI 365 Problem Set 3: Algebraic Data Types &
Polymorphism
due Friday, 9 February 2024

Specification

To receive credit for this problem set:

• You must complete at least 8 out of 12 exercises.

• Any code you write must adhere to the Haskell style guide linked
from the course web page.

Haskell code should be submitted in one or more .hs files. Written
exercises may be submitted either as a PDF, or as comments in one of
the .hs files.

Algebraic Data Types

Exercise 1 Consider the following algebraic data type:

data T where

X :: Bool -> T

Y :: T

Z :: T -> T

List at least five different values of type T.

Exercise 2 In class, we defined an algebraic data type Shape as
follows:

type Coords = (Double, Double)

data Shape where

Circle :: Coords -> Double -> Shape

Rect :: Coords -> Coords -> Shape

(a) Write a function

perimeter :: Shape -> Double

which calculates the perimeter of a shape.

(b) Write a function

translateX :: Double -> Shape -> Shape

which translates any shape horizontally by the given amount.
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(c) Now add a constructor to represent squares, and extend the two
previous functions to handle squares as well. Make sure that you
design the fields of the square constructor appropriately so that it
can only represent squares.

Exercise 3 Consider the following grammar for propositional logic
expressions (without variables):

ϕ ::= T | F | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

That is, a propositional logic expression ϕ can be either a constant
T or F (representing true and false, respectively), the negation of an
expression, or the conjuction or disjunction of two expressions.

Define a Haskell algebraic data type Prop to represent such propo-
sitional logic expressions, and implement a function

eval :: Prop -> Bool

to evaluate propositions according to the usual rules of propositional
logic.

Exercise 4 The standard Haskell library defines a data type

data Maybe a where

Nothing :: Maybe a

Just :: a -> Maybe a

It is typically used to model potential failure: a value of type Maybe a

might contain a value of type a, or it might be Nothing. Implement
each of the following functions:

(a) add :: Maybe Int -> Maybe Int -> Maybe Int, which tries to
add two numbers, but returns Nothing if either of its arguments
is.

(b) divide :: Integer -> Integer -> Maybe Integer, which tries
to compute the integer quotient of its two arguments, but fails if
the second argument is zero.

(c) collapse :: Maybe (Maybe a) -> Maybe a, which returns a
value of type a (wrapped in Just) if at all possible, or Nothing
otherwise.
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Exercise 5 The standard Haskell library also defines a data type

data Either a b where

Left :: a -> Either a b

Right :: b -> Either a b

Implement a function of type

(a, Either b c) -> Either (a,b) (a,c)

Exercise 6 Using our definition of List from class, implement a
function of type

List (Either a b) -> (List a, List b)

which separates out a list of Either a b values into a list of all the
Left values and a list of all the Right values.

Trees

TT

67

or

=
T

Figure 1: Definition of a binary tree T

15

−3

1

04

6

Figure 2: An example binary tree

For the purposes of this problem set, a binary tree containing values of
type a is defined as being either

• empty; or

• a node containing a value of type a and (recursively) two binary
trees, referred to as the “left” and “right” subtrees. See the illustra-
tion in Figure 1, and an example binary tree in Figure 2.

Exercise 7 Define a recursive, polymorphic algebraic data type Tree

which corresponds to the above definition, and define a function

incrementTree :: Tree Integer -> Tree Integer

which adds one to every Integer contained in a tree.

Exercise 8 Define a function

treeSize :: Tree a -> Integer

which computes the size of a tree, defined as the number of nodes.
For example, the tree in Figure 2 has size 6.
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A binary search tree (BST) is a binary tree of Integers in which
the Integer value stored in each node is larger than all the Integer

values in its left subtree, and smaller than all the values in its right
subtree. (For the purposes of this problem set, assume that all the
values in a binary search tree must be distinct.) For example, the
binary tree shown in Figure 2 is not a BST, but the one in Figure 3 is.
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Figure 3: An example binary search tree

Exercise 9 Implement a function

bstInsert :: Integer -> Tree Integer -> Tree Integer.

Given an integer i and a valid BST, bstInsert should produce an-
other valid BST which contains i. If the input BST already contains i,
it should be returned unchanged.1 1 It does not matter what bstInsert

does when given an input Tree which
is not a valid BST. Later in the course
we will talk about ways to use the type
system to help enforce invariants such
as this.

Exercise 10 Write a function2

2 Be careful to check that the value
at a node is less than (resp. greater
than) every node in its left (resp. right)
subtree, not just its immediate children.
Extra challenge: can you ensure your
isBST function runs in linear time?

isBST :: Tree Integer -> Bool

which checks whether the given Tree is a valid BST.
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Further Exploration

Exercise 11 Read the article “The Algebra of Algebraic Data Types,
Part 1”, which can be found at the following URL (the URL should
be clickable; if not, try a different PDF reader, copy and paste the
URL, or just Google the article’s title):

https://gist.github.com/gregberns/5e9da0c95a9a8d2b6338afe69310b945

Do the final exercise from the article, that is, show that

a -> b -> c === (a,b) -> c

in Haskell (corresponding to the algebraic law (cb)a = ca·b) by writing
to and from functions with appropriate types.

Exercise 12 Read the first page of Philip Wadler’s paper Theorems
for free!,3 a PDF of which can be found at 3 Wadler, Philip. Theorems for free!

In Proceedings of the 4th international
Conference on Functional Programming
Languages and Computer Architecture,
pages 347–359. ACM, 1989.

https://dl.acm.org/doi/pdf/10.1145/99370.99404

I do not expect you to read or understand anything beyond the first
page, though you are of course welcome to look if you are curious.
Write a 1–2 paragraph response; what you include in your response
is up to you, but, for example, you might (but are not required to)
include things such as:

• How is this paper related to things we have discussed in class?
What are similarities and differences?

• What was going on with Haskell when this paper was published?
Who is Phil Wadler and what is his relationship with Haskell
and/or functional programming?

• Did you learn anything new, or do you have any new questions
sparked by reading this?
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