
CSCI 365 Problem Set 2: Functions & Haskell
due Friday, 2 February 2024

Specification

To receive credit for this problem set:

• You must complete 7 out of 10 exercises.

• Your code must adhere to the Haskell style guide linked from the
course web page.

Guidelines

When solving the homework, strive to create not just code that
works, but code that is stylish and concise. See the style guide on
the website for some guidelines. Try to write small functions which
perform just a single task, and then combine those smaller pieces
to create more complex functions. Don’t repeat yourself: write one
function for each logical task, and reuse functions as necessary.

Be sure to write functions with exactly the specified name and
type signature for each exercise (to help in testing your code). How-
ever, you may (should!) create additional helper functions with what-
ever names and type signatures you wish.

“HCFP” is an abbreviation for your textbook, “Haskell: the Craft
of Functional Programming”.

Installing Haskell

You will need to install a Haskell toolchain on your computer. Follow
the instructions found on the course website. Please try this early and
come ask for help if you are stuck!

Haskell Basics

Consider the following Haskell definitions:

f :: Integer -> Integer

f 0 = 11

f n = 5*n - 3

g :: Integer -> Integer -> Integer

g x y = (x + 3) ‘div‘ f (y - 2)



csci 365 problem set 2: functions & haskell 2

Exercise 1 Demonstrate (on paper, via a series of rewrite steps) the
evaluation of (g 33 4).

Exercise 2 Demonstrate (on paper, via a series of rewrite steps) the
evaluation of (f (g (f 7) (f 1))).

Exercise 3 Implement a Haskell function nand :: Bool -> Bool -> Bool

corresponding to logical NAND (negated conjunction).

Exercise 4 Complete HCFP Exercise 3.16. Do not use the standard
library toUpper function.

Exercise 5 Implement each of the following Haskell functions:

• dup :: Integer -> (Integer, Integer), which duplicates its
input

• add :: (Integer, Integer) -> Integer, which adds the two
components of a pair of integers

• doubleFst :: (Integer, Integer) -> (Integer, Integer),
which doubles the first component of a pair and leaves the second
component unchanged

Haskell Fun

Exercise 6 Complete HCFP Exercises 3.22, 3.23, and 3.24.

Exercise 7 Write a Haskell function roman :: Integer -> String

which converts any positive integer up to 3999 to a Roman numeral.
You will probably find helpful the built-in operator ++ which concate-
nates two String values into one, for example,

"hi" ++ "there" == "hithere"

Exercise 8 Write a Haskell function isqrt :: Integer -> Integer

which computes the integer square root of a given nonnegative in-
teger n, defined as the largest integer whose square is less than or
equal to n. For example, isqrt 4 = isqrt 8 = 2, isqrt 9 = 3, and
isqrt 604 = 24. Note that your function must work correctly on
integers of any size, so converting to a floating-point number, taking

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 problem set 2: functions & haskell 3

a square root, then rounding down will not work, since it will be
inaccurate for inputs which are too big to be represented exactly as
floating-point numbers.

One way you could accomplish this is via binary search. You could
also use Newton’s method, which works by starting with a guess x
and repeatedly updating x to the average of x and n/x.

Function composition

Exercise 9 Using the definition of function composition,

(f . g) x = f (g x),

show that function composition is associative, by showing that both
f . (g . h) and (f . g) . h yield the same result when applied to
the same input. Note that this justifies us in writing f . g . h (or
even longer function composition chains) with no parentheses, since
the result is unambiguous.

Exercise 10 Using the functions from Exercise 5, along with the
swap :: (Integer, Integer) -> (Integer, Integer) function from
class, implement each of the following functions, using only the given
functions and the function composition operator.

(a) double :: Integer -> Integer, which doubles its input

(b) dectuple :: Integer -> Integer, which multiplies its input by
10

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Specification
	Guidelines
	Installing Haskell
	Haskell Basics
	Haskell Fun
	Function composition

