
CSCI 365 Problem Set 1: Rewriting
due Friday, 26 January 2024

Specification

To receive credit for this problem set, you must complete any 7 out of
the 10 exercises.

Rewriting

Exercise 1 Evaluate the below arithmetic expression via a sequence
of rewriting steps. At each step, underline the subexpression to be
rewritten.

2 − (3 − 4)× (5 × (3 + 2))

Exercise 2 Evaluate the below arithmetic expression via a sequence
of rewriting steps. At each step, underline the subexpression to be
rewritten.

9 + ((8 + ((7 + ((6 + 5)× 4))× 3))× 2)

Exercise 3 Show the process of evaluating the below expression of
Peano arithmetic using the rules introduced in class.

(S(S(SZ)) · S(SZ)) + S(SZ)

As a reminder, the syntax and rewrite rules are as follows:

e ::= Z | Se | e1 + e2 | e1 · e2

Z+ a −→ a

(Sa) + b −→ S(a + b)

a · Z −→ Z

a · (Sb) −→ a + (a · b)

Exercise 4 Let’s add an extra symbol to the syntax of Peano arith-
metic from the previous exercise:

e ::= Z | Se | e1 + e2 | e1 · e2 | e1 ↑ e2

csci 365 problem set 1: rewriting 2

Suppose we want ↑ to denote exponentiation, that is, a ↑ b should
denote ab. For example, we should have A −→∗ B means “A can be rewritten

via zero or more steps to eventually
reach B”.S(S(SZ)) ↑ S(SZ) −→∗ S(S(S(S(S(S(S(S(SZ))))))))

since 32 = 9. Devise appropriate rewrite rule(s) which encode the
desired computational behavior.

Exercise 5 Consider the following rewriting system. First, the syn-
tax of expressions is given by

c ::= S | K | I | c1c2

That is, an expression c is either S, K, I, or two expressions next to
each other. As usual we also allow parentheses for disambiguation.
For example, valid expressions include KI, (IS)K, I(SK), and I((KS)I).

Now consider the following rewrite rules, where s, t, and u repre-
sent arbitrary expressions:

Is −→ s

(Ks)t −→ s

((Ss)t)u −→ (su)(tu)

Evaluate each of the following expressions via a series of rewrites.

(a) ((SK)K)I

(b) ((SK)I)((KI)S)

(c) ((SI)I)K

Exercise 6 Design a syntax and rewrite system for expanding and
simplifying polynomial expressions. For example, your rewrite
system should be able to handle expressions like 2x + 3x2 − 5x or
(y + 3)(y − 7)xy, and it should simplfy the first example to 3x2 − 3x,
and expand the second example to xy3 − 4xy2 − 21xy.

If it’s easier, you may simply use repeated multiplication instead of
exponents, for example, you could represent y3 as yyy.

Substitution

Exercise 7 Consider the following grammar:

T ::= α | Int | Bool | T + T | T × T | T → T

In the above grammar, α stands for any variable.

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 365 problem set 1: rewriting 3

(a) Write down three example expressions of this grammar. Taken
together, your examples should cover all 6 alternatives in the
grammar (that is, at least one example should contain Int, at least
one example should contain →, and so on).

(b) Evaluate: [b 7→ Int](b → (Int → b)) Be careful with parentheses!

(c) Evaluate: [α 7→ (Int → Int)](α × (Bool → α))

(d) Evaluate: [γ 7→ (Bool× Int)]([β 7→ (Int+ γ)](β + Bool+ β))

Exercise 8 Evaluate each of the following expressions via a se-
quence of rewriting steps.

(a) let x = 2 in x + 3

(b) let y = 2 + 5 in (let z = y + 3 in z + (let e = 1 in e + e) · (z + y))

(c) let z = 174 · 93 in let m = 7942 · 7841 in 6

(d) let a = (let b = (let c = 1 in c + 2) in b + 5) in a + 1

Further Exploration

Exercise 9 A confluent rewriting system, informally, is one in which The formal definition is a bit more
technical, but the intuition is all we
need at this point.

from any starting expression, any valid sequence of rewrites will al-
ways ultimately yield the same result. For example, (1 + 2)× (3 + 4)
will always ultimately yield 21, regardless of whether we choose to
rewrite it first to 3 × (3 + 4) or to (1 + 2)× 7. All of the rewriting sys-
tems we have considered as examples so far are confluent, although
in general, confluence is a very special property.

Make up an example of a rewriting system that is not confluent,
and explain/demonstrate why.

Exercise 10 Demonstrate some different options for how we might
evaluate the following expression via rewriting:

let x = 5 in (let x = 9 in x + 1)

What is difficult about this expression? What do you think the result
“should” be? How might we constrain or refine our rewriting rules
so that we always get the desired result in this situation?

© 2024 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Specification
	Rewriting
	Substitution
	Further Exploration

