
Literate Haskell
This is a literate Haskell file. Literate Haskell files end in .lhs instead of
.hs, and they switch the usual roles of code and comments: normally, code is
the default and comments have to be marked with special syntax; in literate
Haskell files, comments are the default and code has to be marked with special
syntax. They are useful for creating documents that tell a story and explain
some code. There are tools for nicely typesetting literate Haskell documents:
for example, I wrote this document using Markdown syntax, and then used the
pandoc document format conversion tool to turn it into a nicely formatted PDF
with syntax highlighted Haskell code, using the command

pandoc -t latex RecursionPatterns.lhs -o recursion-patterns.pdf

(pandoc just so happens to be written in Haskell, though that is a coincidence;
it is widely used for non-Haskell things as well.) You can download the compiled
PDF from the course website.

Getting started
First, let’s turn on a few useful language extensions:

{-# LANGUAGE GADTSyntax #-}
{-# LANGUAGE ExplicitForAll #-}

As you can see, code is marked by lines beginning with a > sign. Note that (1)
there must be a space after the >, and (2) there must be blank lines separating
blocks of code from comments.

x :: Int
x = 3

Ghci knows how to parse .lhs files in addition to .hs files. Make sure you can
load this file into ghci and evaluate x to ensure it loaded properly.

Warmup: polymorphism
Recall our discussion of parametric polymorphism from last class. Here are
a few more function type signatures. For each type signature, write down
an implementation of a function that is accepted by GHC, and give a brief
explanation of what the function does. Beware! One of them is actually
impossible.

m :: (a -> a -> b) -> a -> b
m = undefined -- replace this line with a definition of m

z :: a -> a -> c
z = undefined -- replace this line with a definition of z

1

https://daringfireball.net/projects/markdown/
http://pandoc.org


q :: (b -> c) -> (a -> b) -> a -> c
q = undefined -- replace this line with a definition of q

s :: (a,a) -> (a,a)
s = undefined -- replace this line with a definition of s

Recursion patterns on lists
At this point in the course you’ve written a bunch of recursive functions and you
know that Haskell fundamentally doesn’t have any loops or control structures
other than recursion. It may therefore surprise you to learn that experienced
Haskell programmers rarely write explicitly recursive functions. Instead, there are
standard library functions which encapsulate many common recursion patterns.
Instead of writing a recursive function, an experienced Haskell programmer
will call one or more appropriate recursive library functions, which perform the
recursion for them.

In this module, you’ll explore the implementation of various standard recursion
patterns on lists.

For each type signature below:

1. Implement a (recursive) function which has the given type, using parametric
polymorphism as a guide.

2. In one or two sentences, explain what your function does.
3. Rename the function to something more evocative of its purpose.
4. Give an example of its use.

In many cases, there are multiple possible ways to implement a function of
the given type; you should try to come up with the implementation which
feels parsimonious—i.e. one which uses all the given inputs to the function
in a nontrivial way and which doesn’t (needlessly) duplicate or destroy any
information.

ex1 :: (a -> b) -> [a] -> [b]
ex1 = undefined

ex2 :: (a -> a) -> a -> [a] -- hint: Haskell is cool with infinite lists
ex2 = undefined

ex3 :: (a -> b -> c) -> [a] -> [b] -> [c]
ex3 = undefined

ex4 :: (a -> Bool) -> [a] -> [a]
ex4 = undefined

ex5 :: (a -> b -> b) -> b -> [a] -> b
ex5 = undefined

2



Applying recursion patterns
Write a Haskell function to accomplish each of the tasks below, using the recursion
patterns you implemented in the previous section. Feel free to implement helper
functions as necessary. However, none of the functions you write in this section
are allowed to be recursive; the only recursion allowed is that in the recursion
pattern functions from the previous section.

1. Given a list of Integers as input, keep only those which are less than 100,
and add 3 to each. Return a list of the results.

2. Given an Integer n, construct an (infinite) list of all the powers of n.

3. Compute the dot product of two vectors, represented as lists of Integers.
The dot product of (x1, x2, . . . , xn) and (y1, y2, . . . , yn) is x1y1 + x2y2 +
· · · + xnyn. (You may assume the two input lists have the same length.)

Exploring the standard library
Now visit Hoogle at haskell.org/hoogle/, which allows you to search for things
in standard Haskell libraries. One cool feature is that in addition to searching
by name, Hoogle also allows searching by type. Search for each of the five types
of your recursion patterns and see if you can find a corresponding function in
the standard library. Are your implementations equivalent?

3

http://haskell.org/hoogle

	Literate Haskell
	Getting started
	Warmup: polymorphism
	Recursion patterns on lists
	Applying recursion patterns
	Exploring the standard library

