
CSCI 365 Module 7
Due Wednesday 13 April, 2022

Specification

• To receive Level 1 credit for this module:

– Complete all exercises (1–4).

– You must not write any explicitly recursive definitions. All
recursion must be accomplished through the use of standard
library functions.

• To receive Level 2 credit for this module:

– Complete all requirements for Level 1.

– Additionally ensure that your solution to each exercise uses
no more than 200 characters in total (not counting whitespace,
comments, or type signatures).

Standard library functions you may find helpful on this mod-
ule include: map, filter, foldr, zip, zipWith, iterate, repeat,
replicate, take, drop, takeWhile, dropWhile, and, or, any, all,
concat, concatMap, scanl (but there are also many others that may
be helpful; feel free to also use any others you find). Remember that
you cannot use explicit recursion on this module!

Wholemeal programming

Exercise 1 Rewrite each function below as a pipeline of standard
library functions, without any explicit recursion. For example, given
the definition

f :: [Int] -> [Int]

f [] = []

f (x:xs) = x+1 : f xs

you should rewrite it as f = map (+1).

(a) g :: [Int] -> Int

g [] = 0

g (x:xs)

| x < 5 = g xs

| otherwise = (8*x) + g xs

csci 365 module 7 2

(b) h :: String -> Bool

h str = q ’A’ str

where

q _ [] = True

q cur (c:cs)

| cur > c = False

| otherwise = q (succ cur) cs

Exercise 2
Write a function

skips :: [a] -> [[a]]

The output of skips is a list of lists. The first list in the output should
be the same as the input list. The second list in the output should
contain every second element from the input list. . . and the nth list in
the output should contain every nth element from the input list.

For example:

skips "ABCD" == ["ABCD", "BD", "C", "D"]

skips "hello!" == ["hello!", "el!", "l!", "l", "o", "!"]

skips [1] == [[1]]

skips [True,False] == [[True,False], [False]]

skips [] == []

Note that the output should be the same length as the input.

Exercise 3
A local maximum of a list is an element of the list which is strictly

greater than both the elements immediately before and after it. For
example, in the list [2,3,4,1,5], the only local maximum is 4, since
it is greater than the elements immediately before and after it (3 and
1). 5 is not a local maximum since there is no element that comes
after it.

Write a function

localMaxima :: [Integer] -> [Integer]

which finds all the local maxima in the input list and returns them in
order. For example:

localMaxima [2,9,5,6,1] == [9,6]

localMaxima [2,3,4,1,5] == [4]

localMaxima [1,2,3,4,5] == []

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 365 module 7 3

Exercise 4
For this task, write a function

histogram :: [Integer] -> String

which takes as input a list of Integers between 0 and 9 (inclusive),
and outputs a vertical histogram showing how many of each number
were in the input list. You may assume that the input list does not
contain any numbers less than zero or greater than 9 (that is, it does
not matter what your function does if the input does contain such
numbers). Your output must exactly match the output shown in the
examples below.

histogram [1,1,1,5] ==

*

*

* *
==========

0123456789

histogram [1,4,5,4,6,6,3,4,2,4,9] ==

*

*

* *

****** *
==========

0123456789

Important note: If you type something like histogram [3,5] at
the ghci prompt, you should see something like this:

" * * \n==========\n0123456789\n"

This is a textual representation of the String output, including \n

escape sequences to indicate newline characters. To actually visualize
the histogram as in the examples above, use putStr, for example,
putStr (histogram [3,5]).

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Specification
	Wholemeal programming

