
CSCI 365: Haskell Style Guide

All your submitted programming assignments must adhere to the
following style guidelines. Programming is. . .

• . . . engineering: every field of engineering has a set of best practices
that help in producing high-quality designs.

• . . . communication: social conventions make it easier to communi-
cate by allowing others to focus on the content rather than the form
of your program.

• . . . an art form: as every artist knows, constraints serve to enhance
rather than quench creativity.

If you wish, you may also refer to https://github.com/tibbe/

haskell-style-guide/blob/master/haskell-style.md and https:

//kowainik.github.io/posts/2019-02-06-style-guide which both
go into much more specific detail about best practices for formatting
Haskell code.1 1 I mostly agree with both guides.

Formatting

• DO use camelCase for function and variable names.

• DO use descriptive function names, which are as long as they
need to be but no longer than they have to be. Good: solveRemaining.
Bad: slv. Ugly: solveAllTheCasesWhichWeHaven’tYetProcessed.

• DON’T use tab characters. Haskell is layout-sensitive and tabs
Mess Everything Up. I don’t care how you feel about tabs when
coding in other languages. Just trust me on this one. Note this
does not mean you need to hit space a zillion times to indent each
line; your Favorite Editor ought to support auto-indentation using
spaces instead of tabs. That is, you should be able to use the Tab
key on your keyboard and have your editor automatically insert
space characters in your document.

• DO try to keep every line under 80 characters, with 100 as an
absolute upper limit. This isn’t a hard and fast rule, but code that
is line-wrapped by an editor looks horrible.

• DO use consistent indentation. Code should be indented in such a
way that the indentation level of each line does not depend on the
length of any names in previous lines.

https://github.com/tibbe/haskell-style-guide/blob/master/haskell-style.md
https://github.com/tibbe/haskell-style-guide/blob/master/haskell-style.md
https://kowainik.github.io/posts/2019-02-06-style-guide
https://kowainik.github.io/posts/2019-02-06-style-guide


Documentation

• DO precede every top-level function by a comment explaining
what it does.

• DO give every top-level function a type signature. Type signatures
enhance documentation, clarify thinking, and provide nesting sites
for endangered bird species. Top-level type signatures also result
in better error messages. With no type signatures, type errors
tend to show up far from where the real problem is; explicit type
signatures help localize type errors.

Locally defined functions and constants (part of a let expression
or where clause) do not need type signatures. In fact, sometimes
it can actually hurt: to use local type signatures which are poly-
morphic you need to enable a certain extension and jump through
some hoops (ask for details if you are curious). If you need to add
a polymorphic type signature to a local function (e.g. to help with
debugging a type error) it’s usually a good idea to move it to the
top level.

Functionality

• DO break up your programs into small functions that do one
thing, and compose them to create more complex functions.

• DO make all your functions total. That is, they should give sensi-
ble results (and not crash) for every possible input.

• DON’T leave unused or commented out code in your submission.
If you are worried about saving this code for later, copy it to a
different file or use version control.

• DO use -Wall by putting

{-# OPTIONS_GHC -Wall #-}

at the top of your .hs file. All your submitted programs must
compile with no warnings.


	Formatting
	Documentation
	Functionality

