CSCI 365 Module 5
Due Wednesday 9 March, 2022

Specification

e To receive Level 1 credit for this module:

— Complete exercises 1 and 4-6.

— Complete the survey at https://forms.gle/wj4HWbq9cYrhRGci9
(you should be able to click the above link; it is also linked from
the course website). Note the survey is anonymous; once you
have submitted the survey, on your PDF submission please
include the statement “I solemnly swear I have completed the
survey.”

— Your code must adhere to the style guide linked from the course
web page.

- You must complete Quiz 5 for credit, which will test your
understanding of the simply typed lambda calculus and the
Curry-Howard isomorphism.

¢ To receive Level 2 credit for this module:

— Complete everything required for Level 1.

— Complete exercises 2 and 3.

The Simply-Typed Lambda Calculus

This section provides a reference for the simply-typed A-calculus
extended with product and sum types (abbreviated STLC*), as
discussed in class.

Syntax

Types are denoted by the metavariables « or and are defined by the
following recursive grammar:

a,B:=AB, - la—=Blaxp|lat+p

That is, a type is either a base type (denoted by a capital letter like A,
B, ...), a function type a — f, a product type a x B (written («, f) in
Haskell), or a sum type a + B (written Either a B in Haskell).

or occasionally or whatever other
lowercase Greek letter I feel like using

https://forms.gle/wj4HWbq9cYrhRGci9
http://hendrix-cs.github.io/csci365/hw/style.pdf

CSCI 365 MODULE 5 2

The syntax of terms is given by

tu=x|Ax:a.t|t tp
| (t1,t2) | fst ¢ | snd ¢
| left £ | right t | case t of {left x; — t1; right xo — t2}

Formally, this syntax requires that the argument of a A must be an-
notated with a type (Ax : a.t). However, we will sometimes omit the
type annotation (Ax. t), either because the type can be easily under-
stood from the context, or because it is up to you to deduce what its
type annotation should be.

Typing

The typing rules for this version of the simply-typed A-calculus are
shown below.

x:ael
— Var (Ax)
I'Ex:a
Ix:akt:p
Lam (—])

F'FAx:at:a— B

'Ftp:a— B 'kt :a
't tr: B

App (—E)

I'Et:a IF'Ety:B
FF(h,tz)ZOCX‘B

Pair (xI)

I'tt:axp I'Et:axp
—— Fst(xEy) —— 5nd (xEp)
FEfstt:a I'bsndt:pB

'Ft:a r=t:B .
———— Left (+I) Right (+1»)
Tleftt:a+p T'rightt:a+pB

I'tt:a+p Ixpiabtyiy Txp:pHtry
T case t of {left x; — t1; right xp — 2} : 7y

Case (+E)

Reduction

For completeness, the reduction rules are as follows. We did not dis-
cuss these in class, but they show how terms of STLC* " actually be-
have at runtime, by showing individual evaluation steps. “Running”
a term consists of applying evaluation steps until it is not possible

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

CSCI 365 MODULE 5 3

to reduce any further. Note that all the “Cong” rules are uninterest-
ing, and just say that we can reduce inside of terms. The S rules are
where the interesting computation happens.

(Ax:a.ty) ty ~ [x = bl

H B e Appl LB coneAppR
_— ong- _— ong-
ti by~ H) B EPP 1ty ~ t th PP
- B-Fst - BSnd
fst (tl, tz) ~ 1 snd (t1, tz) ~ 1y
Fam t! tas t!
————— Cong-Fst —————— Cong-Snd
fst t ~~ fst t snd t ~> snd ¢
B-CaseL

case (left t) of {left x1 — t1; right xo — £} ~> [x1 — t]hy

B-CaseR
case (right t) of {left xy — t1; right xo — t2} ~~ [x2 — t]t2

Fam

- ; - Cong-Case
case t of {left x; — ty; right xo — £} ~> case t’ of {left x; — fy; right xo — £}

Exercise 1 Give a valid type for the following term (note there are
multiple correct answers). If it is helpful, you can try constructing a
formal typing derivation (i.e. a proof tree) which assigns it a type; but
you may also reason more informally about it.

Ap.case (fst p) of {left x; — right xq; right x, — x, (Az.2)}

Exercise 2 (Level 2) If T t : w and t ~ t' (that is, if t has a valid
type « and can take a reduction step, resulting in the new reduced
term t'), do you think it will always be the case that T' - ' : « (for the
same type «)? In other words, does reduction preserve types? Explain
how you might go about structuring a proof of this statement. Which
parts are easy? Which parts would be more difficult?

Exercise 3 (Level 2) Recall that in the untyped A-calculus, we can
define the Y combinator by

Y =Af.(Ax. f (x x)) (Ax. f (x x)).

Explain why it is not possible to give a type to Y in the simply-typed Hint: note that, as with anything
defined inductively/recursively, infinite

A-calculus.
types are not allowed.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

Exercise 4 In class we argued that it is not possible to give a valid
type to the Y combinator. However, just showing that Y does not
have a type is not a proof that we have ruled out infinite recursion!
Maybe there is some other tricky thing we can do that has a valid
type but acts like Y. We would like to prove that any well-typed term
will only reduce for a finite number of steps. If a term ¢ does not
reduce infinitely we say t terminates. Otherwise we say t diverges.

One obvious approach would be to prove the following statement
by (strong®') induction on the size® of A-calculus terms:

Vn € N.Vt.(size(t) = n At has a valid type) = t terminates.

Unfortunately, this does not work. Explain why not. (Hint: does
reducing a well-typed A-term always decrease its size?)

THIS TURNS OUT TO actually be true, but proving it is nontrivial—
much too nontrivial to include on this homework, but not so non-
trivial that you would not be able to understand the proof. If you are
interested, you can consult Chapter 12 of Pierce3 (you are welcome to
borrow my copy).

CONSIDER THE FOLLOWING Haskell definitions:

data Ty where
BaseTy :: String -> Ty
Fun Ty -=> Ty -> Ty

deriving (Eq, Show)

data Tm where
Var :: String -> Tm
Lam :: String -> Ty -> Tm -> Tm
App :: Tm -> Tm -> Tm
deriving Show

Ty represents types of the STLC, and Tm represents terms. I have pro-
vided you with the file STLC.hs, which contains the above definitions
along with utilities to parse and pretty-print terms and types (that is,
convert between String representations and the above algebraic data

types).
Exercise 5 Implement a function
inferType :: Tm -> Maybe Ty

which infers the type of a term.

CSCI 365 MODULE 5 4

* The strong induction principle for
natural numbers says that in order to
prove that P holds for all natural num-
bers, we must prove that P holds for an
arbitrary number m under the assump-
tion that P holds for all numbers k < m.
Note this also means we must prove
P(0) without any assumptions, since
there are no k < 0. This is equivalent in
power to the usual induction principle
for natural numbers, but often “feels”
more powerful, since the inductive
hypothesis lets you assume that P holds
for all numbers smaller than m instead
of just the predecessor.

2 The size of a A-calculus term is de-
fined as the number of constructors
it contains, i.e. each A contributes

1 to the size, as does each applica-
tion, pair, and so on. For example,
size(Ax. (fst (y,z))) = 5.

3 Benjamin C. Pierce. Types and program-
ming languages. MIT press, 2002

Hint: You will need to make a recursive
helper function which takes the current
context I' as an extra argument. You
will find the Data.Map module useful
for representing the context. Look at
the Var, Lam, and App rules and try to
translate them into code.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

CSCI 365 MODULE 5 §

For example, given a term such as Ax : A.x, which would be
represented by

Lam "x" (BaseTy "A") (Var "x"),

your function should figure out that it has type A — A, represented
as
Fun (BaseTy "A") (BaseTy "A").

The Curry-Howard isomorphism

Exercise 6 Some of the following propositions are provable in
propositional logic, and some are not.

¢ For those that are provable, demonstrate it by giving a term of
STLC** with a corresponding type (you need not give a formal
typing derivation, though you may find it helpful to do so). Equiv-
alently, you may write a Haskell function with a corresponding
type, as long as you are careful not to use recursion or any other
Haskell features which are not part of STLC.

For example, given the proposition (¢ Ay) = B = &, we can
prove it by giving a A-calculus term, or Haskell function, of type
axc— b— a,like so:

exampleProof :: (a,c) -> b -> a
exampleProof = \p -> \b -> fst p

(Of course this could be written more idiomatically in Haskell as
exampleProof (a,_) _ = a, but I have written it above to explic-
itly use only syntax that is present in STLC**.)

e For those that are not provable, explain why not.

@ a = «

®) (& = a) = «

© (¢ = a) = a) = «

@ (@ABVY) = (@AB)V (@A) Déa v

@ (« = (BA7Y) = (0 = p)A(a = 7))

References

Benjamin C. Pierce. Types and programming languages. MIT press, 2002.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Specification
	The Simply-Typed Lambda Calculus
	The Curry-Howard isomorphism

