
CSCI 365 Module 5
Due Wednesday 9 March, 2022

Specification

• To receive Level 1 credit for this module:

– Complete exercises 1 and 4–6.

– Complete the survey at https://forms.gle/wj4HWbq9cYrhRGci9
(you should be able to click the above link; it is also linked from
the course website). Note the survey is anonymous; once you
have submitted the survey, on your PDF submission please
include the statement “I solemnly swear I have completed the
survey.”

– Your code must adhere to the style guide linked from the course
web page.

– You must complete Quiz 5 for credit, which will test your
understanding of the simply typed lambda calculus and the
Curry-Howard isomorphism.

• To receive Level 2 credit for this module:

– Complete everything required for Level 1.

– Complete exercises 2 and 3.

The Simply-Typed Lambda Calculus

This section provides a reference for the simply-typed λ-calculus
extended with product and sum types (abbreviated STLC×+), as
discussed in class.

Syntax

Types are denoted by the metavariables α or β and are defined by the or occasionally γ or whatever other
lowercase Greek letter I feel like usingfollowing recursive grammar:

α, β ::= A, B, · · · | α→ β | α× β | α + β

That is, a type is either a base type (denoted by a capital letter like A,
B, . . .), a function type α → β, a product type α× β (written (α, β) in
Haskell), or a sum type α + β (written Either α β in Haskell).

https://forms.gle/wj4HWbq9cYrhRGci9
http://hendrix-cs.github.io/csci365/hw/style.pdf

csci 365 module 5 2

The syntax of terms is given by

t :: = x | λx : α. t | t1 t2

| (t1, t2) | fst t | snd t

| left t | right t | case t of {left x1 → t1; right x2 → t2}

Formally, this syntax requires that the argument of a λ must be an-
notated with a type (λx : α. t). However, we will sometimes omit the
type annotation (λx. t), either because the type can be easily under-
stood from the context, or because it is up to you to deduce what its
type annotation should be.

Typing

The typing rules for this version of the simply-typed λ-calculus are
shown below.

x : α ∈ Γ

Γ ` x : α
Var (Ax)

Γ, x : α ` t : β

Γ ` λx : α. t : α→ β
Lam (→I)

Γ ` t1 : α→ β Γ ` t2 : α

Γ ` t1 t2 : β
App (→E)

Γ ` t1 : α Γ ` t2 : β

Γ ` (t1, t2) : α× β
Pair (×I)

Γ ` t : α× β

Γ ` fst t : α
Fst (×E1)

Γ ` t : α× β

Γ ` snd t : β
Snd (×E2)

Γ ` t : α

Γ ` left t : α + β
Left (+I1)

Γ ` t : β

Γ ` right t : α + β
Right (+I2)

Γ ` t : α + β Γ, x1 : α ` t1 : γ Γ, x2 : β ` t2 : γ

Γ ` case t of {left x1 → t1; right x2 → t2} : γ
Case (+E)

Reduction

For completeness, the reduction rules are as follows. We did not dis-
cuss these in class, but they show how terms of STLC×+ actually be-
have at runtime, by showing individual evaluation steps. “Running”
a term consists of applying evaluation steps until it is not possible

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 365 module 5 3

to reduce any further. Note that all the “Cong” rules are uninterest-
ing, and just say that we can reduce inside of terms. The β rules are
where the interesting computation happens.

(λx : α. t1) t2 [x 7→ t2]t1
β

t1 t′1
t1 t2 t′1 t2

Cong-AppL
t2 t′2

t1 t2 t1 t′2
Cong-AppR

fst (t1, t2) t1
β-Fst

snd (t1, t2) t2
β-Snd

t t′

fst t fst t′
Cong-Fst

t t′

snd t snd t′
Cong-Snd

case (left t) of {left x1 → t1; right x2 → t2} [x1 7→ t]t1
β-CaseL

case (right t) of {left x1 → t1; right x2 → t2} [x2 7→ t]t2
β-CaseR

t t′

case t of {left x1 → t1; right x2 → t2} case t′ of {left x1 → t1; right x2 → t2}
Cong-Case

Exercise 1 Give a valid type for the following term (note there are
multiple correct answers). If it is helpful, you can try constructing a
formal typing derivation (i.e. a proof tree) which assigns it a type; but
you may also reason more informally about it.

λp. case (fst p) of {left x1 → right x1; right x2 → x2 (λz. z)}

Exercise 2 (Level 2) If Γ ` t : α and t t′ (that is, if t has a valid
type α and can take a reduction step, resulting in the new reduced
term t′), do you think it will always be the case that Γ ` t′ : α (for the
same type α)? In other words, does reduction preserve types? Explain
how you might go about structuring a proof of this statement. Which
parts are easy? Which parts would be more difficult?

Exercise 3 (Level 2) Recall that in the untyped λ-calculus, we can
define the Y combinator by

Y = λ f . (λx. f (x x)) (λx. f (x x)).

Explain why it is not possible to give a type to Y in the simply-typed Hint: note that, as with anything
defined inductively/recursively, infinite
types are not allowed.

λ-calculus.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 365 module 5 4

Exercise 4 In class we argued that it is not possible to give a valid
type to the Y combinator. However, just showing that Y does not
have a type is not a proof that we have ruled out infinite recursion!
Maybe there is some other tricky thing we can do that has a valid
type but acts like Y. We would like to prove that any well-typed term
will only reduce for a finite number of steps. If a term t does not
reduce infinitely we say t terminates. Otherwise we say t diverges.

One obvious approach would be to prove the following statement
by (strong1) induction on the size2 of λ-calculus terms: 1 The strong induction principle for

natural numbers says that in order to
prove that P holds for all natural num-
bers, we must prove that P holds for an
arbitrary number m under the assump-
tion that P holds for all numbers k < m.
Note this also means we must prove
P(0) without any assumptions, since
there are no k < 0. This is equivalent in
power to the usual induction principle
for natural numbers, but often “feels”
more powerful, since the inductive
hypothesis lets you assume that P holds
for all numbers smaller than m instead
of just the predecessor.
2 The size of a λ-calculus term is de-
fined as the number of constructors
it contains, i.e. each λ contributes
1 to the size, as does each applica-
tion, pair, and so on. For example,
size(λx. (fst (y, z))) = 5.

∀n ∈N.∀t.(size(t) = n ∧ t has a valid type) =⇒ t terminates.

Unfortunately, this does not work. Explain why not. (Hint: does
reducing a well-typed λ-term always decrease its size?)

This turns out to actually be true, but proving it is nontrivial—
much too nontrivial to include on this homework, but not so non-
trivial that you would not be able to understand the proof. If you are
interested, you can consult Chapter 12 of Pierce3 (you are welcome to

3 Benjamin C. Pierce. Types and program-
ming languages. MIT press, 2002

borrow my copy).

Consider the following Haskell definitions:

data Ty where

BaseTy :: String -> Ty

Fun :: Ty -> Ty -> Ty

deriving (Eq, Show)

data Tm where

Var :: String -> Tm

Lam :: String -> Ty -> Tm -> Tm

App :: Tm -> Tm -> Tm

deriving Show

Ty represents types of the STLC, and Tm represents terms. I have pro-
vided you with the file STLC.hs, which contains the above definitions
along with utilities to parse and pretty-print terms and types (that is,
convert between String representations and the above algebraic data
types).

Exercise 5 Implement a function Hint: You will need to make a recursive
helper function which takes the current
context Γ as an extra argument. You
will find the Data.Map module useful
for representing the context. Look at
the Var, Lam, and App rules and try to
translate them into code.

inferType :: Tm -> Maybe Ty

which infers the type of a term.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 365 module 5 5

For example, given a term such as λx : A. x, which would be
represented by

Lam "x" (BaseTy "A") (Var "x"),

your function should figure out that it has type A → A, represented
as

Fun (BaseTy "A") (BaseTy "A").

The Curry-Howard isomorphism

Exercise 6 Some of the following propositions are provable in
propositional logic, and some are not.

• For those that are provable, demonstrate it by giving a term of
STLC×+ with a corresponding type (you need not give a formal
typing derivation, though you may find it helpful to do so). Equiv-
alently, you may write a Haskell function with a corresponding
type, as long as you are careful not to use recursion or any other
Haskell features which are not part of STLC.

For example, given the proposition (α ∧ γ) =⇒ β =⇒ α, we can
prove it by giving a λ-calculus term, or Haskell function, of type
a× c→ b→ a, like so:

exampleProof :: (a,c) -> b -> a

exampleProof = \p -> \b -> fst p

(Of course this could be written more idiomatically in Haskell as
exampleProof (a,_) _ = a, but I have written it above to explic-
itly use only syntax that is present in STLC×+.)

• For those that are not provable, explain why not.

(a) α =⇒ α

(b) (α =⇒ α) =⇒ α

(c) ((α =⇒ α) =⇒ α) =⇒ α

(d) (α ∧ (β ∨ γ)) =⇒ ((α ∧ β) ∨ (α ∧ γ)) Déjà vu?

(e) (α =⇒ (β ∧ γ)) =⇒ ((α =⇒ β) ∧ (α =⇒ γ))

References

Benjamin C. Pierce. Types and programming languages. MIT press, 2002.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Specification
	The Simply-Typed Lambda Calculus
	The Curry-Howard isomorphism

