
CSCI 365 Module 3
due Wednesday, 16 February 2022

Specification

• To receive Level 1 credit for this module:

– Complete exercises 1, 2, 5–7, and 9–12.

– Your code must adhere to the style guide linked from the course
web page.

– You must complete Quiz 3 for credit, which will test your facil-
ity with folds.

• To receive Level 2 credit for this module:

– Complete everything required for Level 1.

– Complete any two of exercises 3, 4, and 8.

– Read part of John Backus’s 1977 Turing Award lecture, write a
short response, and solve exercise 13, as explained at the end of
this document.

List folds

Exercise 1 Implement a function

xor :: [Bool] -> Bool

which returns True if and only if there are an odd number of True
values contained in the input list. It does not matter how many False

values the input list contains. For example,

xor [False, True, False] == True

xor [False, True, False, False, True] == False

Your solution must be implemented using a fold.

Exercise 2 Implement map as a fold. That is, complete the definition

map’ :: (a -> b) -> [a] -> [b]

map’ f = foldr ...

in such a way that map’ behaves identically to the standard map func-
tion.

Exercise 3 (Level 2) Implement foldl using foldr. That is, com-
plete the definition

http://hendrix-cs.github.io/csci365/hw/style.pdf
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myFoldl :: (b -> a -> b) -> b -> [a] -> b

myFoldl f base xs = foldr ...

in such a way that myFoldl behaves identically to the standard foldl

function.
Hint: Study how the application of foldr and foldl work out:

foldr f z [x1, x2, ..., xn] == x1 ‘f‘ (x2 ‘f‘ ... (xn ‘f‘ z)...)

foldl f z [x1, x2, ..., xn] == (...((z ‘f‘ x1) ‘f‘ x2) ‘f‘...) ‘f‘ xn

Hint 2: Ask me if you want another hint.

Exercise 4 (Level 2) Recall the definition of a binary tree data struc-
ture. The height of a binary tree is the length of a path from the root http://en.wikipedia.org/wiki/

Binary_treeto the deepest node. For example, the height of a tree with a single
node is 0; the height of a tree with three nodes, whose root has two
children, is 1; and so on. A binary tree is balanced if the height of its
left and right subtrees differ by no more than 1, and its left and right
subtrees are also balanced.

You should use the following data structure to represent binary
trees. Note that each node stores an extra Integer representing the
size (total number of nodes) of the binary tree at that node.

data Tree a = Empty

| Node Integer (Tree a) a (Tree a)

deriving (Show, Eq)

For this exercise, write a function, implemented using foldr,

mkBalancedTree :: [a] -> Tree a

mkBalancedTree = foldr ...

which generates a balanced binary tree from a list of values.
For example, one sample output might be the following, also visu-

alized at right in Figure 1:
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B

CF

I

J

Figure 1: A balanced tree

foldTree "ABCDEFGHIJ" ==

Node 10

(Node 4

(Node 1 Leaf ’F’ Leaf)

’I’

(Node 2 (Node 1 Leaf ’B’ Leaf) ’C’ Leaf))

’J’

(Node 5

(Node 2 (Node 1 Leaf ’A’ Leaf) ’G’ Leaf)

’H’

(Node 2 (Node 1 Leaf ’D’ Leaf) ’E’ Leaf))
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Your solution might not place the nodes in the same exact order,
but it should result in a balanced tree, with each subtree having a
correct computed size.

General folds

The following exercises concern the type of rose trees, where each
node contains a value of some type and any number of children (in-
cluding the possibility of zero children):

data Rose a where

RNode :: a -> [Rose a] -> Rose a

Exercise 5 Implement a function

mapRose :: (a -> b) -> Rose a -> Rose b.

Exercise 6 Implement a fold for Rose a. 1 1 I’m not telling you the type; that’s part
of the fun.
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Figure 2: A tree with height 4

Exercise 7 Using your fold, implement a function

height :: Rose a -> Integer.

The height of a tree is defined as the length of the deepest path from
the root to any leaf. The height of a leaf (a node with no children) is
therefore zero. An example is shown in Figure 2.
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Figure 3: A tree with width 6

Exercise 8 (Level 2) The width of a tree is defined as the length of
the longest path between two leaves. (That is, a path between two
leaves starts at a leaf, goes up the tree for a while, and then goes
back down to another leaf.) Be careful to note that, as illustrated in
Figure 3, the maximum-width path might not pass through the root
of the tree!

Use your fold to implement a function

width :: Rose a -> Integer.

Note: this is much trickier than it may first appear. You will probably
need a helper function. Please ask for hints if you are stuck.

Representing data via folds

It turns out that having a fold for some data is just as good as having
the data itself! That is, a fold over some data captures all possible

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.
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information about it. (We will make heavy use of this principle later,
when we encode data in the lambda calculus.)

Exercise 9 Begin by implementing a fold for the type Nat, defined by

data Nat where

Z :: Nat

S :: Nat -> Nat

Exercise 10 Using what you know about parametricity, describe the
set of all possible functions of type forall a. (a -> a) -> a -> a. Hint: there are more than 2. Please ask

for help if you are stuck!How many different functions are there of this type? How would you
characterize their behavior in English?

Exercise 11 Implement a function with the type

Nat -> (forall a. (a -> a) -> a -> a).

Be sure that your function gives a different function of type forall a. (a -> a) -> a -> a

for each Nat. (Hint: think about your answers to the previous two
questions.)

Exercise 12 Now implement a function which goes the other way, You will need to enable the
Rank2Types extension, by putting
{-# LANGUAGE Rank2Types #-} at the
top of your .hs file.

that is, a function of type

(forall a. (a -> a) -> a -> a) -> Nat,

which is inverse to your function from the previous exercise. Notice
that since the forall a is inside the parentheses, this means you are
given a function which has to work for any choice of a—which means
that you get to pick the type a when you call it.

Reading (Level 2) Read sections 1–5 of John Backus’s 1977 Turing
Award lecture, Can Programming Be Liberated from the von Neumann The rest of this lecture has lots of cool

stuff in it too; you’re welcome to read
more if you find it interesting, although
beware that it starts getting extremely
hairy about halfway through.

Style? A Functional Style and Its Algebra of Programs, available from
http://worrydream.com/refs/Backus-CanProgrammingBeLiberated.

pdf.
Backus delivered this lecture 45 years ago. In what ways do his

remarks still apply today, and in what ways are they outdated? Give
two specific examples of each.

Exercise 13 (Level 2) Translate the Innerproduct function, defined

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.
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in section 5.2, into Haskell. (You may use the standard transpose

function, defined in the Data.List module.)
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