CSCI 365 Module 4
Due Wednesday 23 February, 2022

Specification

e To receive Level 1 credit for this module:

— Complete exercises 1 and 3-10.

- Your code must adhere to the style guide linked from the course
web page.

- You must complete Quiz 4 for credit, which will test your un-
derstanding of the lambda calculus.

e To receive Level 2 credit for this module:

- Complete everything required for Level 1.

— Complete exercises 2 and 11-13.

Instructions

While working on this problem set you should use the command-line
A-calculus interpreter, which is available from the course website.
Download and unzip, then execute stack run ata command prompt
from within the unzipped directory. Please try it early and let me
know if you have trouble getting it installed!

Note that a file bool. lc is available with some of the definitions
for Booleans that we went over in class.

You will not need to formally prove your answers on this problem
set, but you should justify them, e.g. by giving an example reduction
sequence that illustrates the behavior of some A-calculus term you
have defined, or by giving an informal argument explaining why
your solution is correct.

What to turn in

¢ A .hs file with your solution to exercise 1.

e A text file with the definitions of your lambda calculus terms, in a
format suitable for loading into the lambda calculus evaluator.


http://hendrix-cs.github.io/csci365/hw/style.pdf

CSCI 365 MODULE 4 2

The untyped A-calculus

Exercise 1 Consider the Haskell data type

data Term where
Var :: String -> Term
Lam :: String -> Term -> Term
App :: Term -> Term -> Term

which represents a naive encoding of A-calculus terms as Haskell
values. Write a function

freeVars :: Term -> Set String
which computes the set of all free variables of a term. For example,
freeVars (App (Var "z") (Lam "y" (App (Var "y") (Var "x")))) = fromList ["z","x"].

The Set type can be found in the Data.Set module, which you can
read about on Hackage: https://hackage.haskell.org/package/
containers-0.6.5.1/docs/Data-Set.html. To import it into your .hs
file, you'll want to put something like

import Data.Set (Set)
import qualified Data.Set as S

at the top. Then you can use the Set type and call functions from the
library like S.insert and S.union.

Exercise 2 (Level 2) Ensure that your freeVars function takes
O(nlgn) time or better, where n is the size (i.e. the total number of
constructors) of the Term.

Natural numbers

Recall from lecture that we can represent natural numbers in the
A-calculus by their Church encoding, that is, the natural number # is
represented by the A-calculus term

As.Az.s (s ...(s2))

where the s is repeated n times. In other words, a natural number is
represented by its own fold, that is, a function which takes as arguments
a function s and starting value z, and applies s to z a certain number
of times.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.


https://hackage.haskell.org/package/containers-0.6.5.1/docs/Data-Set.html
https://hackage.haskell.org/package/containers-0.6.5.1/docs/Data-Set.html
http://creativecommons.org/licenses/by/4.0/

We will abbreviate Church-encoded natural numbers as 7). For
example,
3) = As.Az.s (s (s z)).

The following exercises ask you to build up facilities for doing com-
putation with natural numbers.

Exercise 3 Define the natural number 0,, and define a function
succ which takes a (Church-encoded) natural number and yields its
(Church-encoded) successor.

Exercise 4 Define a A-calculus term plus that adds Church numerals.

That is, plus should have the property that
plus my ny = (m+n),,
where = denotes aBy-equivalence of A-calculus terms.

Exercise 5 Define a A-calculus term mul that multiplies Church
numerals.

Exercise 6 Define a A-calculus term exp that exponentiates Church
numerals, that is,
exp my ny = (m"),.

Exercise 7 Define a A-calculus term iszero that decides whether a
Church numeral is zero. That is, when applied to a Church numeral,
it should evaluate to an appropriate Church-encoded boolean.

Church lists

Exercise 8 Define A-calculus terms nil and cons which represent the
constructors for (Church-encoded) lists.

Exercise 9 Define a A-calculus term sum such that, for example,

sum (cons 3, (cons 1, (cons 4, nil))) = 8,.

Exercise 10 Define a A-calculus term filter which works similarly to
Haskell’s standard filter function.

CSCI 365 MODULE 4 3

In order to test your natural number
functions in the A-calculus evaluator,
you will want to evaluate things like,
eg., plus two three S Z instead of
just plus two three. The reason is
that reduction gets “stuck” when the
outermost term constructor is a A.

In order to “fully reduce” a Church-
encoded number like plus two three,
you can apply it to some arguments, in
this case, just two free variables S and Z
to stand in for successor and zero.

Do not look any of these up on the
internet! Not even to “help you get
started” or for “inspiration”. It is easy
to find solutions, and as soon as you do,
you have lost a learning opportunity.

Feel free to define other named A-
calculus terms if it makes your solu-
tions more modular/elegant/readable.

Remember that we will encode lists as
their own folds! You may find it helpful
to write out the recipe in Haskell first.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.


http://creativecommons.org/licenses/by/4.0/

Church pairs and subtraction (Level 2)

Exercise 11 (Level 2) Define A-calculus terms pair, fst, and snd such
that

fst (pair x y) = x

(and similarly for snd).

Exercise 12 (Level 2) Define a A-calculus term pred such that when
n is positive, pred applied to n, is equivalent to (n — 1), (pred applied
to zero can just yield zero).

Exercise 13 (Level 2) Now define a A-calculus term sub that sub-
tracts Church numerals (truncating at zero in the case of subtracting
a larger number from a smaller).

CSCI 365 MODULE 4 4

This problem is tricky! If you are stuck,
feel free to ask me for a hint. Do not try
to find hints online.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.


What is the fold for (a,b)? Think of it as having a single constructor Pair :: a -> b -> (a,b).
http://creativecommons.org/licenses/by/4.0/

	Specification
	Instructions
	What to turn in
	The untyped -calculus
	Natural numbers
	Church lists
	Church pairs and subtraction (Level 2)

