
CSCI 365 problem set 4
Due Wednesday 19 February, 2020
Revision 1: compiled Tuesday 11th February, 2020 at 10:25

Idiomatic Haskell

Exercise 1 Here is a list of standard library functions that every
Haskell programmer ought to be familiar with:

fst snd max min even odd

flip (.) show

head last tail init (++) null concat

map foldr concatMap

product sum and or all any length maximum minimum

filter find

iterate repeat replicate cycle take drop splitAt takeWhile dropWhile

reverse sort

zip zipWith unzip

maybe either

(There are lots of other useful functions in the standard library, but
this is a good start!)

Pick three functions from the above list that you are unfamiliar
with. For each function, do the following:

1. Read the documentation for the function at https://hackage.
haskell.org/package/base/docs/Prelude.html.

2. Write down the function’s type and explain in your own words
what the function does.1 1 For maximum learning, try this: read

the function’s documentation, then put
it aside and do something else for five
minutes. Then try to write down as
much about the function as you can
remember, without peeking (its type, a
description of what it does, etc.). Then
check to see how accurate you were and
whether you missed anything.

3. Give an example expression which uses the function.

Exercise 2 Each of the following function definitions is needlessly
verbose. Write an equivalent definition for each that is shorter or
more idiomatic. For example, sometimes this may involve simpli-
fying redundant expressions; sometimes it may involve replacing
manual recursion with calls to library functions.

(a) f x = \y -> x + y

(b) g n

| n > 2 = True

| otherwise = (n - 3)^2 > 10

https://hackage.haskell.org/package/base/docs/Prelude.html
https://hackage.haskell.org/package/base/docs/Prelude.html

csci 365 problem set 4 2

(c) p a b = if a > 2*b then False else True
Hint: (d) and (e) can both be imple-
mented in a single line of code.(d) fun1 :: [Integer] -> Integer

fun1 [] = 1

fun1 (x:xs)

| even x = (x - 2) * fun1 xs

| otherwise = fun1 xs
Hint: You may want to use iterate and
takeWhile.(e) fun2 :: Integer -> Integer

fun2 1 = 0

fun2 n | even n = n + fun2 (n ‘div‘ 2)

| otherwise = fun2 (3 * n + 1)

List induction

On this problem set, when you are asked to prove something, you
should give a formal-style proof using a structured proof format and
equational reasoning. On the other hand, if you are asked to show or
justify something, an informal (but still convincing) argument will
suffice.

The exercises may refer to the following standard definitions:

length :: [a] -> Integer

length [] = 0

length (_:xs) = 1 + length xs

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

(.) :: (b -> c) -> (a -> b) -> a -> c

(g . f) x = g (f x)

Exercise 3 You must complete at least three out of the following
seven proofs involving list induction. You need not do more than
three, although you may do more if you feel that the practice is use-
ful.

(a) Prove that map id = id. To prove that two functions are equal,
it suffices to show they have the same
result on all inputs. That is, to prove
f = g, it suffices to prove that for all x
of the appropriate type, f x = g x.

(b) Prove that for all functions f and g of appropriate type,

map (f . g) = map f . map g.

© 2020 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 365 problem set 4 3

(c) Give a function f such that

length = foldr f 0,

and prove it.

(d) Give an alternate definition of (++) via foldr, and prove that your
implementation gives the same results as the standard definition.

(e) Prove that (++) is associative. That is, prove that for all lists xs, ys,
and zs,

(xs ++ ys) ++ zs = xs ++ (ys ++ zs).

(f) State and prove a theorem relating map and (++).

Tree induction

Exercise 4 Consider the following definitions.

data Tree a where

Empty :: Tree a

Node :: Tree a -> a -> Tree a -> Tree a

foldTree :: b -> (b -> a -> b -> b) -> Tree a -> b

foldTree e n Empty = e

foldTree e n (Node l a r) = n (foldTree e n l) a (foldTree e n r)

isBST :: Tree Integer -> Bool

isBST Empty = True

isBST (Node l a r) = allTree (<a) l && allTree (>a) r && isBST l && isBST r

allTree :: (a -> Bool) -> Tree a -> Bool

allTree p = foldTree True (\l a r -> l && p a && r)

insert :: Integer -> Tree Integer -> Tree Integer

insert x Empty = Node Empty x Empty

insert x (Node l a r)

| x == a = Node l a r

| x < a = Node (insert x l) a r

| otherwise = Node l a (insert x r)

Give a formal proof that insert preserves binary search trees—
that is, for all t :: Tree Integer and for all x :: Integer, if isBST t

then isBST (insert x t).

© 2020 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Idiomatic Haskell
	List induction
	Tree induction

