
CSCI 365 Module 1
due Wednesday, 26 Jan 2022

Specification

• To receive Level 1 credit for this module:

– You must complete Exercises 1–6.

– Your code must adhere to the style guide linked from the course
web page.

– You must complete Quiz 1 for credit, which will test you on
your ability to write simple recursive list processing functions
in Haskell. January 28 in class is your first opportunity to take
the quiz, but recall that if you do not get credit at that time, you
may retake (a variant of) the quiz.

• To receive Level 2 credit for this module:

– Complete everything required for Level 1.

– Complete exercise 7.

– Read the Wikipedia article on Functional Programming and
write a short response, as explained at the end of this docu-
ment.

Advice

When solving the homework, strive to create not just code that
works, but code that is stylish and concise. See the style guide on
the website for some general guidelines. Try to write small functions
which perform just a single task, and then combine those smaller
pieces to create more complex functions. Don’t repeat yourself: write
one function for each logical task, and reuse functions as necessary.

Be sure to write functions with exactly the specified name and
type signature for each exercise (to help in testing your code). You
may create additional helper functions with whatever names and
type signatures you wish.

Installing Haskell

You will need to install a Haskell toolchain on your computer. Follow
the instructions found on the course website. Please try this early and
come ask for help if you are stuck!

http://hendrix-cs.github.io/csci365/hw/style.pdf


csci 365 module 1 2

Getting started

Exercise 1 What is the largest possible value of type Int on the
computer you are using? How do you know? The value is architecture-dependent, so

don’t just Google it—find out empiri-
cally.

Exercise 2 The following code contains multiple syntax and type
errors. Explain each of the errors and how to fix it. (You may want to
save the code in a .hs file and try loading it in ghci.)

a, b, c :: Integer

a = 3

b = 99.3

c = b / a

c = 8

ints :: [Integer]

ints = [3,4] : [5,6,"seven"]

bar : Char

bar = ’xy’

Look and Say Sequence

The Look and Say Sequence1, introduced by John Conway, begins as 1 https://en.wikipedia.org/wiki/

Look-and-say_sequencefollows:
1, 11, 21, 1211, 111221, 312211, . . .

where each sequence of digits “describes” the previous sequence;
read the Wikipedia article for a full description.

Exercise 3 Write a Haskell function getRun :: [Integer] -> ([Integer], [Integer])

which splits its input list into two pieces, a run of consecutive equal
digits at the beginning, and the rest. For example,

getRun [1,1,1,2,3] = ([1,1,1], [2,3])

getRun [3,2,1] = ([3], [2,1])

getRun [1] = ([1],[])

If you find it helpful, you are welcome to write additional helper
function(s).

Exercise 4 Now write a Haskell function lookAndSay :: [Integer] -> [Integer]

which outputs the next digit sequence when given a digit sequence
as input. For example,

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

https://en.wikipedia.org/wiki/Look-and-say_sequence
https://en.wikipedia.org/wiki/Look-and-say_sequence
http://creativecommons.org/licenses/by/4.0/


csci 365 module 1 3

lookAndSay [1] = [1,1]

lookAndSay [1,1,1,2,2,1] = [3,1,2,2,1,1]

Of course, you should use your getRun function from the previous
exercise.

Exercise 5 Finally, write a function lookAndSaySeq :: Integer -> [[Integer]],
where lookAndSaySeq n produces the first n terms of the look and
say sequence. For example,

lookAndSaySeq 4 = [[1], [1,1], [2,1], [1,2,1,1]]

The Towers of Hanoi
Adapted from an assignment given in
UPenn CIS 552, taught by Benjamin
Pierce

Exercise 6 The Towers of Hanoi is a classic puzzle with a solution
that can be described recursively. Disks of different sizes are stacked
on three pegs; the goal is to get from a starting configuration with
all disks stacked on the first peg to an ending configuration with all
disks stacked on the last peg, as shown in Figure 1. ⇓

Figure 1: The Towers of Hanoi

The only rules are

• you may only move one disk at a time, and

• a larger disk may never be stacked on top of a smaller one.

For example, as the first move all you can do is move the topmost,
smallest disk onto a different peg, since only one disk may be moved
at a time.

Figure 2: A valid first move.

From this point, it is illegal to move to the configuration shown in
Figure 3, because you are not allowed to put the green disk on top of
the smaller blue one.

Figure 3: An illegal configuration.

For this exercise, define a function hanoi with the following type:

type Peg = String

type Move = (Peg, Peg)

hanoi :: Integer -> Peg -> Peg -> Peg -> [Move]

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 365 module 1 4

Given the number of discs and names for the three pegs, hanoi
should return a list of moves to be performed to move the stack of
discs from the first peg to the last.

Note that a type declaration, like type Peg = String above, makes
a type synonym. In this case Peg is declared as a synonym for String,
and the two names Peg and String can now be used interchangeably.
Giving more descriptive names to types in this way can be used to
give shorter names to complicated types, or (as here) simply to help
with documentation.

Example: hanoi 2 "a" "b" "c" == [("a","b"), ("a","c"), ("b","c")]

Exercise 7 (Level 2) What if there are four pegs instead of three?
That is, the goal is still to move a stack of discs from the first peg to
the last peg, without ever placing a larger disc on top of a smaller
one, but now there are two extra pegs that can be used as “tempo-
rary” storage instead of only one. Write a function similar to hanoi

which solves this problem.
It should be possible to do it in far fewer moves than with three

pegs. For example, with three pegs it takes 215 − 1 = 32767 moves
to transfer 15 discs. With four pegs it can be done in only 129 moves!
However, you need not worry about making your function as efficient
as possible, as long as it does significantly better than with three
pegs. See Exercise 1.17 in Graham, Knuth,

and Patashnik, Concrete Mathematics,
second ed., Addison-Wesley, 1994.

If you are stuck, feel free to search for more information on the
Internet; be sure to cite any sources you use.

Reading (Level 2) Read the Wikipedia page on Functional Pro-
gramming: https://en.wikipedia.org/wiki/Functional_programming. Important: To avoid simply copying

your answers from Wikipedia (and to
help your brain learn and retain more),
I suggest making some brief notes
while you read, then later (after at least
15 minutes) coming back and writing
your responses without looking at the
Wikipedia page, referring only to your
notes.

You don’t necessarily have to read every single word, but you should
read at least some parts of it carefully (pick whatever seems most
interesting to you) and skim the rest. Then write some short (a few
sentences each) responses to the following questions.

1. When was the first functional programming language created?

2. In your own words, what are a few of the defining characteristics
of functional programming?

3. What is one way in which functional programming seems like it
might be different than other programming languages you know?
How do you think this might affect the way you write programs?

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

https://en.wikipedia.org/wiki/Functional_programming
http://creativecommons.org/licenses/by/4.0/

	Specification
	Advice
	Installing Haskell
	Getting started
	Look and Say Sequence
	The Towers of Hanoi

