
CSCI 365 Module 2
due Wednesday, 2 February 2022

Specification

• To receive Level 1 credit for this module:

– Complete Exercises 1–5, 7, and 9.

– Your code must adhere to the style guide linked from the course
web page.

– You must complete Quiz 2 for credit, which will test you on
your ability to work with recursive algebraic data types in
Haskell.

• To receive Level 2 credit for this module:

– Complete everything required for Level 1.

– Complete exercises 6, 8, and 10–11.

Trees
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Figure 2: An example binary tree

For the purposes of this problem set, a binary tree containing values of
type a is defined as being either

• empty; or

• a node containing a value of type a and (recursively) two binary
trees, referred to as the “left” and “right” subtrees. See the illustra-
tion in Figure 1, and an example binary tree in Figure 2.

Exercise 1 Define a recursive, polymorphic algebraic data type Tree

which corresponds to the above definition.

Exercise 2 Define a function

incrementTree :: Tree Integer -> Tree Integer

which adds one to every Integer contained in a tree.

Exercise 3 Define a function

treeSize :: Tree a -> Integer

http://hendrix-cs.github.io/csci365/hw/style.pdf
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which computes the size of a tree, defined as the number of nodes.
For example, the tree in Figure 2 has size 6.

A binary search tree (BST) is a binary tree of Integers in which
the Integer value stored in each node is larger than all the Integer

values in its left subtree, and smaller than all the values in its right
subtree. (For the purposes of this problem set, assume that all the
values in a binary search tree must be distinct.) For example, the
binary tree shown in Figure 2 is not a BST, but the one in Figure 3 is.
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Figure 3: An example binary search tree

The following problems ask you to implement some basic binary
search tree algorithms. If you don’t remember how they work, you
can ask me, or consult a reference such as Cormen et al. [2001, Chap-
ter 13].

Exercise 4 Implement a function

bstInsert :: Integer -> Tree Integer -> Tree Integer.

Given an integer i and a valid BST, bstInsert should produce an-
other valid BST which contains i. If the input BST already contains i,
it should be returned unchanged.1 1 It does not matter what bstInsert

does when given an input Tree which
is not a valid BST. Later in the course
we will talk about ways to use the type
system to help enforce invariants such
as this.

Exercise 5 Write a function

isBST :: Tree Integer -> Bool

which checks whether the given Tree is a valid BST.

Exercise 6 (Level 2) Ensure that your isBST function runs in O(n)
time.

Proof trees

Consider the following Haskell definitions, which encode the simple
proof system we considered as a first example in class, with only
propositional variables. For example, a rule of this system might look
like

A B

C
.

Since everything is a tree, we can easily encode these proof trees as
values of an algebraic data type in Haskell.
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These definitions are available in
Proof.hs. If you download Proof.hs

and put it in the same folder as
your .hs or .lhs file, you can add
import Proof at the top of your .hs
file in order to make use of the types it
defines.

Note that the type keyword creates a
type synonym, i.e. Prop and String can
now be used completely interchange-
ably (and similarly for System and
[Rule]).

-- Prop is a synonym for String, and represents

-- logical propositions, like A, B, C in the example above.

type Prop = String

-- An inference rule is a list of premises and a conclusion.

-- For example, the rule

--

-- A B C

-- -------------

-- D

--

-- would be represented as (R ["A", "B", "C"] "D").

data Rule where

R :: [Prop] -> Prop -> Rule

-- A rule system is a list of rules.

type System = [Rule]

-- A proof is a tree where each node contains a rule and

-- a list of proofs of the rule’s premises. For example,

-- the proof tree

--

-- ---

-- A

-- --- --- ---

-- A B C

-- -------------

-- D

--

-- would be represented as

-- (PNode (R ["A", "B", "C"] "D")

-- [ PNode (R [] "A") []

-- , PNode (R ["A"] "B") [PNode (R [] "A") []]

-- , PNode (R [] "C") []

-- ]

-- )

data Proof where

PNode

:: Rule -- ^ The rule used as the bottommost (root) rule in

-- the proof tree

-> [Proof] -- ^ A list of proofs of each of the premises of the

-- rule (in the same order)

-> Proof
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Exercise 7 Write a function

checkProof :: Proof -> Prop -> Bool,

which, given a purported proof and a proposition, checks whether
the given proof is actually a valid proof of the given proposition. (A
proof might not be valid because, e.g., the final conclusion is not the
requested proposition, or because some node contains proofs whose
conclusions do not match the stated premises of its rule.) You may
assume that in a valid proof node, the premises of the rule match
up with the given proofs in order, that is, the first proof should be a
proof of the first premise of the rule, the second proof of the second
premise, and so on (this makes your job a bit easier, and is a not
unreasonable requirement).

Exercise 8 (Level 2) Write a function

findProof :: System -> Prop -> Maybe Proof.

Given a rule system and a goal proposition, it should either return
a valid proof of the proposition using only rules from the system, or
Nothing if there is no valid proof.
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Propositional logic

Exercise 9 Give formal derivations (proof trees) for each of the fol-
lowing judgments. You will probably want to draw these

by hand and then turn them in on
paper. If you are a really hard-core
LATEX user and want to typeset them,
try the mathpartir package, available
from http://cristal.inria.fr/

~remy/latex/mathpartir.sty, with
documentation at http://cristal.
inria.fr/~remy/latex/mathpartir.

html. You might also want to use the
lscape or pdflscape packages to put
individual pages in landscape mode,
since the proof trees tend to be much
wider than they are tall.

(a) (P =⇒ (Q =⇒ R)) ` (Q =⇒ (P =⇒ R))

(b) ((P ∧Q) =⇒ R) ` (P =⇒ (Q =⇒ R))

(c) ((P ∨Q) =⇒ R) ` ((P =⇒ R) ∧ (Q =⇒ R))

Exercise 10 (Level 2) Take each of the above three judgments and
replace ∧ by multiplication, ∨ by addition, and replace =⇒ by
(backwards) exponentiation, i.e. replace P =⇒ Q by QP. What do
you notice?

Exercise 11 (Level 2) We did not talk about negation (¬P) in class,
since it turns out that for our purposes, it is possible to encode nega-
tion using other logical connectives. In particular, consider defining

¬P := (P =⇒ ⊥).

Using this definition, for each of the following judgments, either
give a formal derivation (i.e. a proof tree), or explain why it is not
possible.

(a) ` P ∧ ¬P =⇒ ⊥

(b) ` P ∨ ¬P

(c) ` P =⇒ ¬(¬P)

(d) ` ¬(¬P) =⇒ P

(e) ` ¬(P ∨Q) =⇒ (¬P ∧ ¬Q)
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