
CSCI 150: Practice Exam 2 Solutions

1. Eustace is tasked with writing a function that takes a list of numbers as
input and returns True if every even number in the list is adjacent to an
odd number, and False otherwise. He writes the following incorrect code:

from typing import *

def adjacent(nums: List[int]) -> bool:

for i in nums:

if nums[i] % 2 == 0:

if nums[i - 1] % 2 == 1 or nums[i + 2] % 2 == 1:

return True

else:

return False

Describe three things that are wrong with his code and how you would fix
it.

(a) The for loop needs to loop over the indices of nums, not the elements.

(b) The return True should be outside the loop; we won’t know if ev-
erything in the list satisfies the condition until the very end.

(c) The element next to nums[i] is nums[i + 1], not nums[i + 2].

(d) If we start at the first index, nums[i-1] will yield an “index out of
bounds” error.

There are many ways to write a correct version of adjacent; here is one:

from typing import *

def adjacent(nums: List[int]) -> bool:

for i in range(len(nums)):

if nums[i] % 2 == 0:

hasodd: bool = False

if i > 0 and nums[i-1] % 2 == 1:

hasodd = True

if i < len(nums) - 1 and nums[i+1] % 2 == 1:

hasodd = True

1



if not hasodd:

return False

return True

2



2. What is the value of n after execution of the following Python program?

t = "WHEREINTHEWORLDIS"

r = "CarmenSandiego"

p = t.find("R") * 4 - 1

f = r[-3:]

n = t[p:p + 2] + f + "N"

n.lower()

After execution of this program, n = "ORegoN".

3



3. Consider the function below, which prompts the user for two numbers and
then prints their sum.

def get_sum():

valid = False

while not valid:

value1 = input("Enter a number:")

if value1.isdigit() or value1[0] == ’-’ and value1[1:].isdigit():

valid = True

value1 = int(value1)

else:

print("Not a number, try again!")

valid = False

while not valid:

value2 = input("Enter another number:")

if value2.isdigit() or value2[0] == ’-’ and value2[1:].isdigit():

valid = True

value2 = int(value2)

else:

print("Not a number, try again!")

return value1 + value2

Although it works, it has a lot of duplicated code.

First, write a function called input integer(prompt) that abstracts the
process of acquiring a single valid integer from the user (which happens
twice in the above code). Be sure to include comments explaining the
function’s input(s), output(s), and description. (On the next page, you
will use input integer to simplify get sum.)

def input_integer(prompt: str) -> int:

valid = False

while not valid:

value = input(prompt)

if value.isdigit() or value[0] == ’-’ and value[1:].isdigit():

valid = True

value = int(value)

else:

print("Not a number, try again!")

return value

4



Now, use input integer to simplify the definition of get sum. Your def-
inition of get sum below should have exactly the same behavior as the
original get sum on the previous page.

def get_sum() -> int:

value1 = input_integer("Enter a number:")

value2 = input_integer("Enter another number:")

return value1 + value2

5



4. We discussed the Collatz conjecture earlier in the semester. Here is a
similar process for an arbitrary positive integer n:

� If n is a multiple of three, divide it by three.

� Otherwise, double it and add one.

For example, starting with n = 10, one gets the sequence 10, 21, 7, 15, 5,
etc.

Using a while loop, write a function in Python that accepts a number n
as a parameter, and repeats the process above until either n = 1 or until
100 steps are reached. The function should return how many steps the
process took to reach 1, or return −1 if the process went on for 100 steps.
This function should not input anything from the user nor print
anything.

def splaz(n: int) -> int:

steps: int = 0

while n != 1 and steps < 100:

if n % 3 == 0:

n //= 3

else:

n = 2*n + 1

steps += 1

if steps == 100:

return -1

else:

return steps

6



5. On the next page, trace the execution of the following Python program,
showing the function stack, local variables of each function call, the return
value of each function call, and any printed output.

def pheasant(n: int) -> int:

return 5

def fish(p: int) -> int:

p *= 3

return p + 1

def frog(p: int) -> int:

p += 5

if p < 7:

return fish(p)

else:

return pheasant(p)

def main():

print(frog(1))

print(frog(2))

main()

7



Scratch Stack

Printed output



Appendix: some common string methods

S.count(sub: str) -> int

Return the number of non-overlapping occurrences of sub-

string sub in string S.

S.find(sub: str) -> int

Return the smallest index in S where substring sub is found.

Return -1 if sub is not found.

S.replace(old: str, new: str) -> str

Return a copy of string S with all occurrences of substring

old replaced by new.

S.isdigit() -> bool

Return True if all characters in S are digits

and there is at least one character in S, False otherwise.

S.upper() -> str

Return a copy of the string S converted to uppercase.

S.lower() -> str

Return a copy of the string S converted to lowercase.

9


